Evaluate
-\frac{1}{6}\approx -0.166666667
Factor
-\frac{1}{6} = -0.16666666666666666
Share
Copied to clipboard
\frac{5}{4}\left(-\frac{2}{3}\right)-\frac{\left(-\frac{2}{3}\right)^{5}}{\left(-\frac{2}{3}\right)^{4}}
To multiply powers of the same base, add their exponents. Add 3 and 2 to get 5.
\frac{5}{4}\left(-\frac{2}{3}\right)-\left(-\frac{2}{3}\right)^{1}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 4 from 5 to get 1.
\frac{5\left(-2\right)}{4\times 3}-\left(-\frac{2}{3}\right)^{1}
Multiply \frac{5}{4} times -\frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{-10}{12}-\left(-\frac{2}{3}\right)^{1}
Do the multiplications in the fraction \frac{5\left(-2\right)}{4\times 3}.
-\frac{5}{6}-\left(-\frac{2}{3}\right)^{1}
Reduce the fraction \frac{-10}{12} to lowest terms by extracting and canceling out 2.
-\frac{5}{6}-\left(-\frac{2}{3}\right)
Calculate -\frac{2}{3} to the power of 1 and get -\frac{2}{3}.
-\frac{5}{6}+\frac{2}{3}
The opposite of -\frac{2}{3} is \frac{2}{3}.
-\frac{5}{6}+\frac{4}{6}
Least common multiple of 6 and 3 is 6. Convert -\frac{5}{6} and \frac{2}{3} to fractions with denominator 6.
\frac{-5+4}{6}
Since -\frac{5}{6} and \frac{4}{6} have the same denominator, add them by adding their numerators.
-\frac{1}{6}
Add -5 and 4 to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}