Solve for c
c=-\frac{1}{4}=-0.25
Share
Copied to clipboard
-4c+\frac{1}{4}=\frac{5}{4}
Swap sides so that all variable terms are on the left hand side.
-4c=\frac{5}{4}-\frac{1}{4}
Subtract \frac{1}{4} from both sides.
-4c=\frac{5-1}{4}
Since \frac{5}{4} and \frac{1}{4} have the same denominator, subtract them by subtracting their numerators.
-4c=\frac{4}{4}
Subtract 1 from 5 to get 4.
-4c=1
Divide 4 by 4 to get 1.
c=\frac{1}{-4}
Divide both sides by -4.
c=-\frac{1}{4}
Fraction \frac{1}{-4} can be rewritten as -\frac{1}{4} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}