Solve for x
x=-\frac{20\left(5y-192\right)}{5y-92}
y\neq \frac{92}{5}
Solve for y
y=\frac{4\left(23x+960\right)}{5\left(x+20\right)}
x\neq -20
Graph
Share
Copied to clipboard
\frac{20x}{20+x}+y=6\times \frac{32}{5}
Multiply both sides by \frac{32}{5}, the reciprocal of \frac{5}{32}.
\frac{20x}{20+x}+y=\frac{192}{5}
Multiply 6 and \frac{32}{5} to get \frac{192}{5}.
5\times 20x+5\left(x+20\right)y=192\left(x+20\right)
Variable x cannot be equal to -20 since division by zero is not defined. Multiply both sides of the equation by 5\left(x+20\right), the least common multiple of 20+x,5.
100x+5\left(x+20\right)y=192\left(x+20\right)
Multiply 5 and 20 to get 100.
100x+\left(5x+100\right)y=192\left(x+20\right)
Use the distributive property to multiply 5 by x+20.
100x+5xy+100y=192\left(x+20\right)
Use the distributive property to multiply 5x+100 by y.
100x+5xy+100y=192x+3840
Use the distributive property to multiply 192 by x+20.
100x+5xy+100y-192x=3840
Subtract 192x from both sides.
-92x+5xy+100y=3840
Combine 100x and -192x to get -92x.
-92x+5xy=3840-100y
Subtract 100y from both sides.
\left(-92+5y\right)x=3840-100y
Combine all terms containing x.
\left(5y-92\right)x=3840-100y
The equation is in standard form.
\frac{\left(5y-92\right)x}{5y-92}=\frac{3840-100y}{5y-92}
Divide both sides by 5y-92.
x=\frac{3840-100y}{5y-92}
Dividing by 5y-92 undoes the multiplication by 5y-92.
x=\frac{20\left(192-5y\right)}{5y-92}
Divide 3840-100y by 5y-92.
x=\frac{20\left(192-5y\right)}{5y-92}\text{, }x\neq -20
Variable x cannot be equal to -20.
\frac{20x}{20+x}+y=6\times \frac{32}{5}
Multiply both sides by \frac{32}{5}, the reciprocal of \frac{5}{32}.
\frac{20x}{20+x}+y=\frac{192}{5}
Multiply 6 and \frac{32}{5} to get \frac{192}{5}.
5\times 20x+5\left(x+20\right)y=192\left(x+20\right)
Multiply both sides of the equation by 5\left(x+20\right), the least common multiple of 20+x,5.
100x+5\left(x+20\right)y=192\left(x+20\right)
Multiply 5 and 20 to get 100.
100x+\left(5x+100\right)y=192\left(x+20\right)
Use the distributive property to multiply 5 by x+20.
100x+5xy+100y=192\left(x+20\right)
Use the distributive property to multiply 5x+100 by y.
100x+5xy+100y=192x+3840
Use the distributive property to multiply 192 by x+20.
5xy+100y=192x+3840-100x
Subtract 100x from both sides.
5xy+100y=92x+3840
Combine 192x and -100x to get 92x.
\left(5x+100\right)y=92x+3840
Combine all terms containing y.
\frac{\left(5x+100\right)y}{5x+100}=\frac{92x+3840}{5x+100}
Divide both sides by 100+5x.
y=\frac{92x+3840}{5x+100}
Dividing by 100+5x undoes the multiplication by 100+5x.
y=\frac{4\left(23x+960\right)}{5\left(x+20\right)}
Divide 92x+3840 by 100+5x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}