Solve for y (complex solution)
\left\{\begin{matrix}y=-\frac{16-5x}{21y_{7}}\text{, }&y_{7}\neq 0\\y\in \mathrm{C}\text{, }&x=\frac{16}{5}\text{ and }y_{7}=0\end{matrix}\right.
Solve for x
x=\frac{21yy_{7}+16}{5}
Solve for y
\left\{\begin{matrix}y=-\frac{16-5x}{21y_{7}}\text{, }&y_{7}\neq 0\\y\in \mathrm{R}\text{, }&x=\frac{16}{5}\text{ and }y_{7}=0\end{matrix}\right.
Graph
Share
Copied to clipboard
\frac{5}{3}x-3=7y_{7}y+\frac{7}{3}
Add -\frac{8}{3} and 5 to get \frac{7}{3}.
7y_{7}y+\frac{7}{3}=\frac{5}{3}x-3
Swap sides so that all variable terms are on the left hand side.
7y_{7}y=\frac{5}{3}x-3-\frac{7}{3}
Subtract \frac{7}{3} from both sides.
7y_{7}y=\frac{5}{3}x-\frac{16}{3}
Subtract \frac{7}{3} from -3 to get -\frac{16}{3}.
7y_{7}y=\frac{5x-16}{3}
The equation is in standard form.
\frac{7y_{7}y}{7y_{7}}=\frac{5x-16}{3\times 7y_{7}}
Divide both sides by 7y_{7}.
y=\frac{5x-16}{3\times 7y_{7}}
Dividing by 7y_{7} undoes the multiplication by 7y_{7}.
y=\frac{5x-16}{21y_{7}}
Divide \frac{-16+5x}{3} by 7y_{7}.
\frac{5}{3}x-3=7y_{7}y+\frac{7}{3}
Add -\frac{8}{3} and 5 to get \frac{7}{3}.
\frac{5}{3}x=7y_{7}y+\frac{7}{3}+3
Add 3 to both sides.
\frac{5}{3}x=7y_{7}y+\frac{16}{3}
Add \frac{7}{3} and 3 to get \frac{16}{3}.
\frac{5}{3}x=7yy_{7}+\frac{16}{3}
The equation is in standard form.
\frac{\frac{5}{3}x}{\frac{5}{3}}=\frac{7yy_{7}+\frac{16}{3}}{\frac{5}{3}}
Divide both sides of the equation by \frac{5}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{7yy_{7}+\frac{16}{3}}{\frac{5}{3}}
Dividing by \frac{5}{3} undoes the multiplication by \frac{5}{3}.
x=\frac{21yy_{7}+16}{5}
Divide 7y_{7}y+\frac{16}{3} by \frac{5}{3} by multiplying 7y_{7}y+\frac{16}{3} by the reciprocal of \frac{5}{3}.
\frac{5}{3}x-3=7y_{7}y+\frac{7}{3}
Add -\frac{8}{3} and 5 to get \frac{7}{3}.
7y_{7}y+\frac{7}{3}=\frac{5}{3}x-3
Swap sides so that all variable terms are on the left hand side.
7y_{7}y=\frac{5}{3}x-3-\frac{7}{3}
Subtract \frac{7}{3} from both sides.
7y_{7}y=\frac{5}{3}x-\frac{16}{3}
Subtract \frac{7}{3} from -3 to get -\frac{16}{3}.
7y_{7}y=\frac{5x-16}{3}
The equation is in standard form.
\frac{7y_{7}y}{7y_{7}}=\frac{5x-16}{3\times 7y_{7}}
Divide both sides by 7y_{7}.
y=\frac{5x-16}{3\times 7y_{7}}
Dividing by 7y_{7} undoes the multiplication by 7y_{7}.
y=\frac{5x-16}{21y_{7}}
Divide \frac{5x-16}{3} by 7y_{7}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}