Solve for n
n = \frac{41}{15} = 2\frac{11}{15} \approx 2.733333333
Share
Copied to clipboard
5\left(3n+2\right)=3\left(12+5\right)
Variable n cannot be equal to -\frac{2}{3} since division by zero is not defined. Multiply both sides of the equation by 3\left(3n+2\right), the least common multiple of 3,3n+2.
15n+10=3\left(12+5\right)
Use the distributive property to multiply 5 by 3n+2.
15n+10=3\times 17
Add 12 and 5 to get 17.
15n+10=51
Multiply 3 and 17 to get 51.
15n=51-10
Subtract 10 from both sides.
15n=41
Subtract 10 from 51 to get 41.
n=\frac{41}{15}
Divide both sides by 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}