Solve for x
x=-\frac{433}{15060}\approx -0.02875166
Graph
Share
Copied to clipboard
\frac{5}{3}+\frac{9}{2}\times \frac{1}{4}+\frac{9}{2}\left(-25\right)x+3x-\left(\frac{4}{5}+6\right)=7x+9x-\frac{2}{5}
Use the distributive property to multiply \frac{9}{2} by \frac{1}{4}-25x.
\frac{5}{3}+\frac{9\times 1}{2\times 4}+\frac{9}{2}\left(-25\right)x+3x-\left(\frac{4}{5}+6\right)=7x+9x-\frac{2}{5}
Multiply \frac{9}{2} times \frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{5}{3}+\frac{9}{8}+\frac{9}{2}\left(-25\right)x+3x-\left(\frac{4}{5}+6\right)=7x+9x-\frac{2}{5}
Do the multiplications in the fraction \frac{9\times 1}{2\times 4}.
\frac{5}{3}+\frac{9}{8}+\frac{9\left(-25\right)}{2}x+3x-\left(\frac{4}{5}+6\right)=7x+9x-\frac{2}{5}
Express \frac{9}{2}\left(-25\right) as a single fraction.
\frac{5}{3}+\frac{9}{8}+\frac{-225}{2}x+3x-\left(\frac{4}{5}+6\right)=7x+9x-\frac{2}{5}
Multiply 9 and -25 to get -225.
\frac{5}{3}+\frac{9}{8}-\frac{225}{2}x+3x-\left(\frac{4}{5}+6\right)=7x+9x-\frac{2}{5}
Fraction \frac{-225}{2} can be rewritten as -\frac{225}{2} by extracting the negative sign.
\frac{40}{24}+\frac{27}{24}-\frac{225}{2}x+3x-\left(\frac{4}{5}+6\right)=7x+9x-\frac{2}{5}
Least common multiple of 3 and 8 is 24. Convert \frac{5}{3} and \frac{9}{8} to fractions with denominator 24.
\frac{40+27}{24}-\frac{225}{2}x+3x-\left(\frac{4}{5}+6\right)=7x+9x-\frac{2}{5}
Since \frac{40}{24} and \frac{27}{24} have the same denominator, add them by adding their numerators.
\frac{67}{24}-\frac{225}{2}x+3x-\left(\frac{4}{5}+6\right)=7x+9x-\frac{2}{5}
Add 40 and 27 to get 67.
\frac{67}{24}-\frac{219}{2}x-\left(\frac{4}{5}+6\right)=7x+9x-\frac{2}{5}
Combine -\frac{225}{2}x and 3x to get -\frac{219}{2}x.
\frac{67}{24}-\frac{219}{2}x-\left(\frac{4}{5}+\frac{30}{5}\right)=7x+9x-\frac{2}{5}
Convert 6 to fraction \frac{30}{5}.
\frac{67}{24}-\frac{219}{2}x-\frac{4+30}{5}=7x+9x-\frac{2}{5}
Since \frac{4}{5} and \frac{30}{5} have the same denominator, add them by adding their numerators.
\frac{67}{24}-\frac{219}{2}x-\frac{34}{5}=7x+9x-\frac{2}{5}
Add 4 and 30 to get 34.
\frac{335}{120}-\frac{219}{2}x-\frac{816}{120}=7x+9x-\frac{2}{5}
Least common multiple of 24 and 5 is 120. Convert \frac{67}{24} and \frac{34}{5} to fractions with denominator 120.
\frac{335-816}{120}-\frac{219}{2}x=7x+9x-\frac{2}{5}
Since \frac{335}{120} and \frac{816}{120} have the same denominator, subtract them by subtracting their numerators.
-\frac{481}{120}-\frac{219}{2}x=7x+9x-\frac{2}{5}
Subtract 816 from 335 to get -481.
-\frac{481}{120}-\frac{219}{2}x=16x-\frac{2}{5}
Combine 7x and 9x to get 16x.
-\frac{481}{120}-\frac{219}{2}x-16x=-\frac{2}{5}
Subtract 16x from both sides.
-\frac{481}{120}-\frac{251}{2}x=-\frac{2}{5}
Combine -\frac{219}{2}x and -16x to get -\frac{251}{2}x.
-\frac{251}{2}x=-\frac{2}{5}+\frac{481}{120}
Add \frac{481}{120} to both sides.
-\frac{251}{2}x=-\frac{48}{120}+\frac{481}{120}
Least common multiple of 5 and 120 is 120. Convert -\frac{2}{5} and \frac{481}{120} to fractions with denominator 120.
-\frac{251}{2}x=\frac{-48+481}{120}
Since -\frac{48}{120} and \frac{481}{120} have the same denominator, add them by adding their numerators.
-\frac{251}{2}x=\frac{433}{120}
Add -48 and 481 to get 433.
x=\frac{433}{120}\left(-\frac{2}{251}\right)
Multiply both sides by -\frac{2}{251}, the reciprocal of -\frac{251}{2}.
x=\frac{433\left(-2\right)}{120\times 251}
Multiply \frac{433}{120} times -\frac{2}{251} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-866}{30120}
Do the multiplications in the fraction \frac{433\left(-2\right)}{120\times 251}.
x=-\frac{433}{15060}
Reduce the fraction \frac{-866}{30120} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}