Solve for x
x = \frac{6262}{5} = 1252\frac{2}{5} = 1252.4
Graph
Share
Copied to clipboard
\frac{\frac{5}{28}\sqrt{50x+100}}{\frac{5}{28}}=\frac{20\sqrt{5}}{\frac{5}{28}}
Divide both sides of the equation by \frac{5}{28}, which is the same as multiplying both sides by the reciprocal of the fraction.
\sqrt{50x+100}=\frac{20\sqrt{5}}{\frac{5}{28}}
Dividing by \frac{5}{28} undoes the multiplication by \frac{5}{28}.
\sqrt{50x+100}=112\sqrt{5}
Divide 20\sqrt{5} by \frac{5}{28} by multiplying 20\sqrt{5} by the reciprocal of \frac{5}{28}.
50x+100=62720
Square both sides of the equation.
50x+100-100=62720-100
Subtract 100 from both sides of the equation.
50x=62720-100
Subtracting 100 from itself leaves 0.
50x=62620
Subtract 100 from 62720.
\frac{50x}{50}=\frac{62620}{50}
Divide both sides by 50.
x=\frac{62620}{50}
Dividing by 50 undoes the multiplication by 50.
x=\frac{6262}{5}
Reduce the fraction \frac{62620}{50} to lowest terms by extracting and canceling out 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}