Solve for z
z=\frac{44}{81}\approx 0.543209877
Share
Copied to clipboard
20-21\times 2+252-6\left(4z-3\right)=336z-12\times 3\left(z-2\right)
Multiply both sides of the equation by 84, the least common multiple of 21,4,14,7.
20-42+252-6\left(4z-3\right)=336z-12\times 3\left(z-2\right)
Multiply -21 and 2 to get -42.
-22+252-6\left(4z-3\right)=336z-12\times 3\left(z-2\right)
Subtract 42 from 20 to get -22.
230-6\left(4z-3\right)=336z-12\times 3\left(z-2\right)
Add -22 and 252 to get 230.
230-24z+18=336z-12\times 3\left(z-2\right)
Use the distributive property to multiply -6 by 4z-3.
248-24z=336z-12\times 3\left(z-2\right)
Add 230 and 18 to get 248.
248-24z=336z-36\left(z-2\right)
Multiply -12 and 3 to get -36.
248-24z=336z-36z+72
Use the distributive property to multiply -36 by z-2.
248-24z=300z+72
Combine 336z and -36z to get 300z.
248-24z-300z=72
Subtract 300z from both sides.
248-324z=72
Combine -24z and -300z to get -324z.
-324z=72-248
Subtract 248 from both sides.
-324z=-176
Subtract 248 from 72 to get -176.
z=\frac{-176}{-324}
Divide both sides by -324.
z=\frac{44}{81}
Reduce the fraction \frac{-176}{-324} to lowest terms by extracting and canceling out -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}