Evaluate
\frac{61}{98}\approx 0.62244898
Factor
\frac{61}{2 \cdot 7 ^ {2}} = 0.6224489795918368
Share
Copied to clipboard
\frac{5}{21}\times \frac{7+5}{7}+\frac{2}{4}\times \frac{3}{7}
Multiply 1 and 7 to get 7.
\frac{5}{21}\times \frac{12}{7}+\frac{2}{4}\times \frac{3}{7}
Add 7 and 5 to get 12.
\frac{5\times 12}{21\times 7}+\frac{2}{4}\times \frac{3}{7}
Multiply \frac{5}{21} times \frac{12}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{60}{147}+\frac{2}{4}\times \frac{3}{7}
Do the multiplications in the fraction \frac{5\times 12}{21\times 7}.
\frac{20}{49}+\frac{2}{4}\times \frac{3}{7}
Reduce the fraction \frac{60}{147} to lowest terms by extracting and canceling out 3.
\frac{20}{49}+\frac{1}{2}\times \frac{3}{7}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{20}{49}+\frac{1\times 3}{2\times 7}
Multiply \frac{1}{2} times \frac{3}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{20}{49}+\frac{3}{14}
Do the multiplications in the fraction \frac{1\times 3}{2\times 7}.
\frac{40}{98}+\frac{21}{98}
Least common multiple of 49 and 14 is 98. Convert \frac{20}{49} and \frac{3}{14} to fractions with denominator 98.
\frac{40+21}{98}
Since \frac{40}{98} and \frac{21}{98} have the same denominator, add them by adding their numerators.
\frac{61}{98}
Add 40 and 21 to get 61.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}