Solve for x
x = -\frac{11}{7} = -1\frac{4}{7} \approx -1.571428571
Graph
Share
Copied to clipboard
\left(2x+4\right)\times 5=\left(x+3\right)\times 3
Variable x cannot be equal to any of the values -3,-2 since division by zero is not defined. Multiply both sides of the equation by 4\left(x+2\right)\left(x+3\right), the least common multiple of 2x+6,4x+8.
10x+20=\left(x+3\right)\times 3
Use the distributive property to multiply 2x+4 by 5.
10x+20=3x+9
Use the distributive property to multiply x+3 by 3.
10x+20-3x=9
Subtract 3x from both sides.
7x+20=9
Combine 10x and -3x to get 7x.
7x=9-20
Subtract 20 from both sides.
7x=-11
Subtract 20 from 9 to get -11.
x=\frac{-11}{7}
Divide both sides by 7.
x=-\frac{11}{7}
Fraction \frac{-11}{7} can be rewritten as -\frac{11}{7} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}