Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{5\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}+ki
Multiply both numerator and denominator of \frac{5}{2-i} by the complex conjugate of the denominator, 2+i.
\frac{5\left(2+i\right)}{2^{2}-i^{2}}+ki
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5\left(2+i\right)}{5}+ki
By definition, i^{2} is -1. Calculate the denominator.
\frac{5\times 2+5i}{5}+ki
Multiply 5 times 2+i.
\frac{10+5i}{5}+ki
Do the multiplications in 5\times 2+5i.
2+i+ki
Divide 10+5i by 5 to get 2+i.