Solve for x
x=-\frac{1}{2}=-0.5
Graph
Share
Copied to clipboard
\frac{5}{2}x=-\frac{7}{12}-\frac{2}{3}
Fraction \frac{-7}{12} can be rewritten as -\frac{7}{12} by extracting the negative sign.
\frac{5}{2}x=-\frac{7}{12}-\frac{8}{12}
Least common multiple of 12 and 3 is 12. Convert -\frac{7}{12} and \frac{2}{3} to fractions with denominator 12.
\frac{5}{2}x=\frac{-7-8}{12}
Since -\frac{7}{12} and \frac{8}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{2}x=\frac{-15}{12}
Subtract 8 from -7 to get -15.
\frac{5}{2}x=-\frac{5}{4}
Reduce the fraction \frac{-15}{12} to lowest terms by extracting and canceling out 3.
x=-\frac{5}{4}\times \frac{2}{5}
Multiply both sides by \frac{2}{5}, the reciprocal of \frac{5}{2}.
x=\frac{-5\times 2}{4\times 5}
Multiply -\frac{5}{4} times \frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-10}{20}
Do the multiplications in the fraction \frac{-5\times 2}{4\times 5}.
x=-\frac{1}{2}
Reduce the fraction \frac{-10}{20} to lowest terms by extracting and canceling out 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}