Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

t^{2}=12\times \frac{2}{5}
Multiply both sides by \frac{2}{5}, the reciprocal of \frac{5}{2}.
t^{2}=\frac{24}{5}
Multiply 12 and \frac{2}{5} to get \frac{24}{5}.
t=\frac{2\sqrt{30}}{5} t=-\frac{2\sqrt{30}}{5}
Take the square root of both sides of the equation.
t^{2}=12\times \frac{2}{5}
Multiply both sides by \frac{2}{5}, the reciprocal of \frac{5}{2}.
t^{2}=\frac{24}{5}
Multiply 12 and \frac{2}{5} to get \frac{24}{5}.
t^{2}-\frac{24}{5}=0
Subtract \frac{24}{5} from both sides.
t=\frac{0±\sqrt{0^{2}-4\left(-\frac{24}{5}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{24}{5} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\left(-\frac{24}{5}\right)}}{2}
Square 0.
t=\frac{0±\sqrt{\frac{96}{5}}}{2}
Multiply -4 times -\frac{24}{5}.
t=\frac{0±\frac{4\sqrt{30}}{5}}{2}
Take the square root of \frac{96}{5}.
t=\frac{2\sqrt{30}}{5}
Now solve the equation t=\frac{0±\frac{4\sqrt{30}}{5}}{2} when ± is plus.
t=-\frac{2\sqrt{30}}{5}
Now solve the equation t=\frac{0±\frac{4\sqrt{30}}{5}}{2} when ± is minus.
t=\frac{2\sqrt{30}}{5} t=-\frac{2\sqrt{30}}{5}
The equation is now solved.