Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{5}{2}\times 6x+\frac{5}{2}\left(-7\right)+\frac{4}{3}\left(2+9x\right)
Use the distributive property to multiply \frac{5}{2} by 6x-7.
\frac{5\times 6}{2}x+\frac{5}{2}\left(-7\right)+\frac{4}{3}\left(2+9x\right)
Express \frac{5}{2}\times 6 as a single fraction.
\frac{30}{2}x+\frac{5}{2}\left(-7\right)+\frac{4}{3}\left(2+9x\right)
Multiply 5 and 6 to get 30.
15x+\frac{5}{2}\left(-7\right)+\frac{4}{3}\left(2+9x\right)
Divide 30 by 2 to get 15.
15x+\frac{5\left(-7\right)}{2}+\frac{4}{3}\left(2+9x\right)
Express \frac{5}{2}\left(-7\right) as a single fraction.
15x+\frac{-35}{2}+\frac{4}{3}\left(2+9x\right)
Multiply 5 and -7 to get -35.
15x-\frac{35}{2}+\frac{4}{3}\left(2+9x\right)
Fraction \frac{-35}{2} can be rewritten as -\frac{35}{2} by extracting the negative sign.
15x-\frac{35}{2}+\frac{4}{3}\times 2+\frac{4}{3}\times 9x
Use the distributive property to multiply \frac{4}{3} by 2+9x.
15x-\frac{35}{2}+\frac{4\times 2}{3}+\frac{4}{3}\times 9x
Express \frac{4}{3}\times 2 as a single fraction.
15x-\frac{35}{2}+\frac{8}{3}+\frac{4}{3}\times 9x
Multiply 4 and 2 to get 8.
15x-\frac{35}{2}+\frac{8}{3}+\frac{4\times 9}{3}x
Express \frac{4}{3}\times 9 as a single fraction.
15x-\frac{35}{2}+\frac{8}{3}+\frac{36}{3}x
Multiply 4 and 9 to get 36.
15x-\frac{35}{2}+\frac{8}{3}+12x
Divide 36 by 3 to get 12.
15x-\frac{105}{6}+\frac{16}{6}+12x
Least common multiple of 2 and 3 is 6. Convert -\frac{35}{2} and \frac{8}{3} to fractions with denominator 6.
15x+\frac{-105+16}{6}+12x
Since -\frac{105}{6} and \frac{16}{6} have the same denominator, add them by adding their numerators.
15x-\frac{89}{6}+12x
Add -105 and 16 to get -89.
27x-\frac{89}{6}
Combine 15x and 12x to get 27x.
\frac{5}{2}\times 6x+\frac{5}{2}\left(-7\right)+\frac{4}{3}\left(2+9x\right)
Use the distributive property to multiply \frac{5}{2} by 6x-7.
\frac{5\times 6}{2}x+\frac{5}{2}\left(-7\right)+\frac{4}{3}\left(2+9x\right)
Express \frac{5}{2}\times 6 as a single fraction.
\frac{30}{2}x+\frac{5}{2}\left(-7\right)+\frac{4}{3}\left(2+9x\right)
Multiply 5 and 6 to get 30.
15x+\frac{5}{2}\left(-7\right)+\frac{4}{3}\left(2+9x\right)
Divide 30 by 2 to get 15.
15x+\frac{5\left(-7\right)}{2}+\frac{4}{3}\left(2+9x\right)
Express \frac{5}{2}\left(-7\right) as a single fraction.
15x+\frac{-35}{2}+\frac{4}{3}\left(2+9x\right)
Multiply 5 and -7 to get -35.
15x-\frac{35}{2}+\frac{4}{3}\left(2+9x\right)
Fraction \frac{-35}{2} can be rewritten as -\frac{35}{2} by extracting the negative sign.
15x-\frac{35}{2}+\frac{4}{3}\times 2+\frac{4}{3}\times 9x
Use the distributive property to multiply \frac{4}{3} by 2+9x.
15x-\frac{35}{2}+\frac{4\times 2}{3}+\frac{4}{3}\times 9x
Express \frac{4}{3}\times 2 as a single fraction.
15x-\frac{35}{2}+\frac{8}{3}+\frac{4}{3}\times 9x
Multiply 4 and 2 to get 8.
15x-\frac{35}{2}+\frac{8}{3}+\frac{4\times 9}{3}x
Express \frac{4}{3}\times 9 as a single fraction.
15x-\frac{35}{2}+\frac{8}{3}+\frac{36}{3}x
Multiply 4 and 9 to get 36.
15x-\frac{35}{2}+\frac{8}{3}+12x
Divide 36 by 3 to get 12.
15x-\frac{105}{6}+\frac{16}{6}+12x
Least common multiple of 2 and 3 is 6. Convert -\frac{35}{2} and \frac{8}{3} to fractions with denominator 6.
15x+\frac{-105+16}{6}+12x
Since -\frac{105}{6} and \frac{16}{6} have the same denominator, add them by adding their numerators.
15x-\frac{89}{6}+12x
Add -105 and 16 to get -89.
27x-\frac{89}{6}
Combine 15x and 12x to get 27x.