Evaluate
27x-\frac{89}{6}
Expand
27x-\frac{89}{6}
Graph
Share
Copied to clipboard
\frac{5}{2}\times 6x+\frac{5}{2}\left(-7\right)+\frac{4}{3}\left(2+9x\right)
Use the distributive property to multiply \frac{5}{2} by 6x-7.
\frac{5\times 6}{2}x+\frac{5}{2}\left(-7\right)+\frac{4}{3}\left(2+9x\right)
Express \frac{5}{2}\times 6 as a single fraction.
\frac{30}{2}x+\frac{5}{2}\left(-7\right)+\frac{4}{3}\left(2+9x\right)
Multiply 5 and 6 to get 30.
15x+\frac{5}{2}\left(-7\right)+\frac{4}{3}\left(2+9x\right)
Divide 30 by 2 to get 15.
15x+\frac{5\left(-7\right)}{2}+\frac{4}{3}\left(2+9x\right)
Express \frac{5}{2}\left(-7\right) as a single fraction.
15x+\frac{-35}{2}+\frac{4}{3}\left(2+9x\right)
Multiply 5 and -7 to get -35.
15x-\frac{35}{2}+\frac{4}{3}\left(2+9x\right)
Fraction \frac{-35}{2} can be rewritten as -\frac{35}{2} by extracting the negative sign.
15x-\frac{35}{2}+\frac{4}{3}\times 2+\frac{4}{3}\times 9x
Use the distributive property to multiply \frac{4}{3} by 2+9x.
15x-\frac{35}{2}+\frac{4\times 2}{3}+\frac{4}{3}\times 9x
Express \frac{4}{3}\times 2 as a single fraction.
15x-\frac{35}{2}+\frac{8}{3}+\frac{4}{3}\times 9x
Multiply 4 and 2 to get 8.
15x-\frac{35}{2}+\frac{8}{3}+\frac{4\times 9}{3}x
Express \frac{4}{3}\times 9 as a single fraction.
15x-\frac{35}{2}+\frac{8}{3}+\frac{36}{3}x
Multiply 4 and 9 to get 36.
15x-\frac{35}{2}+\frac{8}{3}+12x
Divide 36 by 3 to get 12.
15x-\frac{105}{6}+\frac{16}{6}+12x
Least common multiple of 2 and 3 is 6. Convert -\frac{35}{2} and \frac{8}{3} to fractions with denominator 6.
15x+\frac{-105+16}{6}+12x
Since -\frac{105}{6} and \frac{16}{6} have the same denominator, add them by adding their numerators.
15x-\frac{89}{6}+12x
Add -105 and 16 to get -89.
27x-\frac{89}{6}
Combine 15x and 12x to get 27x.
\frac{5}{2}\times 6x+\frac{5}{2}\left(-7\right)+\frac{4}{3}\left(2+9x\right)
Use the distributive property to multiply \frac{5}{2} by 6x-7.
\frac{5\times 6}{2}x+\frac{5}{2}\left(-7\right)+\frac{4}{3}\left(2+9x\right)
Express \frac{5}{2}\times 6 as a single fraction.
\frac{30}{2}x+\frac{5}{2}\left(-7\right)+\frac{4}{3}\left(2+9x\right)
Multiply 5 and 6 to get 30.
15x+\frac{5}{2}\left(-7\right)+\frac{4}{3}\left(2+9x\right)
Divide 30 by 2 to get 15.
15x+\frac{5\left(-7\right)}{2}+\frac{4}{3}\left(2+9x\right)
Express \frac{5}{2}\left(-7\right) as a single fraction.
15x+\frac{-35}{2}+\frac{4}{3}\left(2+9x\right)
Multiply 5 and -7 to get -35.
15x-\frac{35}{2}+\frac{4}{3}\left(2+9x\right)
Fraction \frac{-35}{2} can be rewritten as -\frac{35}{2} by extracting the negative sign.
15x-\frac{35}{2}+\frac{4}{3}\times 2+\frac{4}{3}\times 9x
Use the distributive property to multiply \frac{4}{3} by 2+9x.
15x-\frac{35}{2}+\frac{4\times 2}{3}+\frac{4}{3}\times 9x
Express \frac{4}{3}\times 2 as a single fraction.
15x-\frac{35}{2}+\frac{8}{3}+\frac{4}{3}\times 9x
Multiply 4 and 2 to get 8.
15x-\frac{35}{2}+\frac{8}{3}+\frac{4\times 9}{3}x
Express \frac{4}{3}\times 9 as a single fraction.
15x-\frac{35}{2}+\frac{8}{3}+\frac{36}{3}x
Multiply 4 and 9 to get 36.
15x-\frac{35}{2}+\frac{8}{3}+12x
Divide 36 by 3 to get 12.
15x-\frac{105}{6}+\frac{16}{6}+12x
Least common multiple of 2 and 3 is 6. Convert -\frac{35}{2} and \frac{8}{3} to fractions with denominator 6.
15x+\frac{-105+16}{6}+12x
Since -\frac{105}{6} and \frac{16}{6} have the same denominator, add them by adding their numerators.
15x-\frac{89}{6}+12x
Add -105 and 16 to get -89.
27x-\frac{89}{6}
Combine 15x and 12x to get 27x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}