Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{5}{2}\left(9+6\lambda +\lambda ^{2}\right)-\frac{5}{6}\left(9\lambda -3\right)^{2}+\frac{5}{3}\left(6-3\lambda \right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+\lambda \right)^{2}.
\frac{45}{2}+15\lambda +\frac{5}{2}\lambda ^{2}-\frac{5}{6}\left(9\lambda -3\right)^{2}+\frac{5}{3}\left(6-3\lambda \right)^{2}
Use the distributive property to multiply \frac{5}{2} by 9+6\lambda +\lambda ^{2}.
\frac{45}{2}+15\lambda +\frac{5}{2}\lambda ^{2}-\frac{5}{6}\left(81\lambda ^{2}-54\lambda +9\right)+\frac{5}{3}\left(6-3\lambda \right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(9\lambda -3\right)^{2}.
\frac{45}{2}+15\lambda +\frac{5}{2}\lambda ^{2}-\frac{135}{2}\lambda ^{2}+45\lambda -\frac{15}{2}+\frac{5}{3}\left(6-3\lambda \right)^{2}
Use the distributive property to multiply -\frac{5}{6} by 81\lambda ^{2}-54\lambda +9.
\frac{45}{2}+15\lambda -65\lambda ^{2}+45\lambda -\frac{15}{2}+\frac{5}{3}\left(6-3\lambda \right)^{2}
Combine \frac{5}{2}\lambda ^{2} and -\frac{135}{2}\lambda ^{2} to get -65\lambda ^{2}.
\frac{45}{2}+60\lambda -65\lambda ^{2}-\frac{15}{2}+\frac{5}{3}\left(6-3\lambda \right)^{2}
Combine 15\lambda and 45\lambda to get 60\lambda .
15+60\lambda -65\lambda ^{2}+\frac{5}{3}\left(6-3\lambda \right)^{2}
Subtract \frac{15}{2} from \frac{45}{2} to get 15.
15+60\lambda -65\lambda ^{2}+\frac{5}{3}\left(36-36\lambda +9\lambda ^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6-3\lambda \right)^{2}.
15+60\lambda -65\lambda ^{2}+60-60\lambda +15\lambda ^{2}
Use the distributive property to multiply \frac{5}{3} by 36-36\lambda +9\lambda ^{2}.
75+60\lambda -65\lambda ^{2}-60\lambda +15\lambda ^{2}
Add 15 and 60 to get 75.
75-65\lambda ^{2}+15\lambda ^{2}
Combine 60\lambda and -60\lambda to get 0.
75-50\lambda ^{2}
Combine -65\lambda ^{2} and 15\lambda ^{2} to get -50\lambda ^{2}.
\frac{5}{2}\left(9+6\lambda +\lambda ^{2}\right)-\frac{5}{6}\left(9\lambda -3\right)^{2}+\frac{5}{3}\left(6-3\lambda \right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+\lambda \right)^{2}.
\frac{45}{2}+15\lambda +\frac{5}{2}\lambda ^{2}-\frac{5}{6}\left(9\lambda -3\right)^{2}+\frac{5}{3}\left(6-3\lambda \right)^{2}
Use the distributive property to multiply \frac{5}{2} by 9+6\lambda +\lambda ^{2}.
\frac{45}{2}+15\lambda +\frac{5}{2}\lambda ^{2}-\frac{5}{6}\left(81\lambda ^{2}-54\lambda +9\right)+\frac{5}{3}\left(6-3\lambda \right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(9\lambda -3\right)^{2}.
\frac{45}{2}+15\lambda +\frac{5}{2}\lambda ^{2}-\frac{135}{2}\lambda ^{2}+45\lambda -\frac{15}{2}+\frac{5}{3}\left(6-3\lambda \right)^{2}
Use the distributive property to multiply -\frac{5}{6} by 81\lambda ^{2}-54\lambda +9.
\frac{45}{2}+15\lambda -65\lambda ^{2}+45\lambda -\frac{15}{2}+\frac{5}{3}\left(6-3\lambda \right)^{2}
Combine \frac{5}{2}\lambda ^{2} and -\frac{135}{2}\lambda ^{2} to get -65\lambda ^{2}.
\frac{45}{2}+60\lambda -65\lambda ^{2}-\frac{15}{2}+\frac{5}{3}\left(6-3\lambda \right)^{2}
Combine 15\lambda and 45\lambda to get 60\lambda .
15+60\lambda -65\lambda ^{2}+\frac{5}{3}\left(6-3\lambda \right)^{2}
Subtract \frac{15}{2} from \frac{45}{2} to get 15.
15+60\lambda -65\lambda ^{2}+\frac{5}{3}\left(36-36\lambda +9\lambda ^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6-3\lambda \right)^{2}.
15+60\lambda -65\lambda ^{2}+60-60\lambda +15\lambda ^{2}
Use the distributive property to multiply \frac{5}{3} by 36-36\lambda +9\lambda ^{2}.
75+60\lambda -65\lambda ^{2}-60\lambda +15\lambda ^{2}
Add 15 and 60 to get 75.
75-65\lambda ^{2}+15\lambda ^{2}
Combine 60\lambda and -60\lambda to get 0.
75-50\lambda ^{2}
Combine -65\lambda ^{2} and 15\lambda ^{2} to get -50\lambda ^{2}.