Evaluate
75-50\lambda ^{2}
Expand
75-50\lambda ^{2}
Share
Copied to clipboard
\frac{5}{2}\left(9+6\lambda +\lambda ^{2}\right)-\frac{5}{6}\left(9\lambda -3\right)^{2}+\frac{5}{3}\left(6-3\lambda \right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+\lambda \right)^{2}.
\frac{45}{2}+15\lambda +\frac{5}{2}\lambda ^{2}-\frac{5}{6}\left(9\lambda -3\right)^{2}+\frac{5}{3}\left(6-3\lambda \right)^{2}
Use the distributive property to multiply \frac{5}{2} by 9+6\lambda +\lambda ^{2}.
\frac{45}{2}+15\lambda +\frac{5}{2}\lambda ^{2}-\frac{5}{6}\left(81\lambda ^{2}-54\lambda +9\right)+\frac{5}{3}\left(6-3\lambda \right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(9\lambda -3\right)^{2}.
\frac{45}{2}+15\lambda +\frac{5}{2}\lambda ^{2}-\frac{135}{2}\lambda ^{2}+45\lambda -\frac{15}{2}+\frac{5}{3}\left(6-3\lambda \right)^{2}
Use the distributive property to multiply -\frac{5}{6} by 81\lambda ^{2}-54\lambda +9.
\frac{45}{2}+15\lambda -65\lambda ^{2}+45\lambda -\frac{15}{2}+\frac{5}{3}\left(6-3\lambda \right)^{2}
Combine \frac{5}{2}\lambda ^{2} and -\frac{135}{2}\lambda ^{2} to get -65\lambda ^{2}.
\frac{45}{2}+60\lambda -65\lambda ^{2}-\frac{15}{2}+\frac{5}{3}\left(6-3\lambda \right)^{2}
Combine 15\lambda and 45\lambda to get 60\lambda .
15+60\lambda -65\lambda ^{2}+\frac{5}{3}\left(6-3\lambda \right)^{2}
Subtract \frac{15}{2} from \frac{45}{2} to get 15.
15+60\lambda -65\lambda ^{2}+\frac{5}{3}\left(36-36\lambda +9\lambda ^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6-3\lambda \right)^{2}.
15+60\lambda -65\lambda ^{2}+60-60\lambda +15\lambda ^{2}
Use the distributive property to multiply \frac{5}{3} by 36-36\lambda +9\lambda ^{2}.
75+60\lambda -65\lambda ^{2}-60\lambda +15\lambda ^{2}
Add 15 and 60 to get 75.
75-65\lambda ^{2}+15\lambda ^{2}
Combine 60\lambda and -60\lambda to get 0.
75-50\lambda ^{2}
Combine -65\lambda ^{2} and 15\lambda ^{2} to get -50\lambda ^{2}.
\frac{5}{2}\left(9+6\lambda +\lambda ^{2}\right)-\frac{5}{6}\left(9\lambda -3\right)^{2}+\frac{5}{3}\left(6-3\lambda \right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+\lambda \right)^{2}.
\frac{45}{2}+15\lambda +\frac{5}{2}\lambda ^{2}-\frac{5}{6}\left(9\lambda -3\right)^{2}+\frac{5}{3}\left(6-3\lambda \right)^{2}
Use the distributive property to multiply \frac{5}{2} by 9+6\lambda +\lambda ^{2}.
\frac{45}{2}+15\lambda +\frac{5}{2}\lambda ^{2}-\frac{5}{6}\left(81\lambda ^{2}-54\lambda +9\right)+\frac{5}{3}\left(6-3\lambda \right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(9\lambda -3\right)^{2}.
\frac{45}{2}+15\lambda +\frac{5}{2}\lambda ^{2}-\frac{135}{2}\lambda ^{2}+45\lambda -\frac{15}{2}+\frac{5}{3}\left(6-3\lambda \right)^{2}
Use the distributive property to multiply -\frac{5}{6} by 81\lambda ^{2}-54\lambda +9.
\frac{45}{2}+15\lambda -65\lambda ^{2}+45\lambda -\frac{15}{2}+\frac{5}{3}\left(6-3\lambda \right)^{2}
Combine \frac{5}{2}\lambda ^{2} and -\frac{135}{2}\lambda ^{2} to get -65\lambda ^{2}.
\frac{45}{2}+60\lambda -65\lambda ^{2}-\frac{15}{2}+\frac{5}{3}\left(6-3\lambda \right)^{2}
Combine 15\lambda and 45\lambda to get 60\lambda .
15+60\lambda -65\lambda ^{2}+\frac{5}{3}\left(6-3\lambda \right)^{2}
Subtract \frac{15}{2} from \frac{45}{2} to get 15.
15+60\lambda -65\lambda ^{2}+\frac{5}{3}\left(36-36\lambda +9\lambda ^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6-3\lambda \right)^{2}.
15+60\lambda -65\lambda ^{2}+60-60\lambda +15\lambda ^{2}
Use the distributive property to multiply \frac{5}{3} by 36-36\lambda +9\lambda ^{2}.
75+60\lambda -65\lambda ^{2}-60\lambda +15\lambda ^{2}
Add 15 and 60 to get 75.
75-65\lambda ^{2}+15\lambda ^{2}
Combine 60\lambda and -60\lambda to get 0.
75-50\lambda ^{2}
Combine -65\lambda ^{2} and 15\lambda ^{2} to get -50\lambda ^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}