Evaluate
-\frac{40}{13}\approx -3.076923077
Factor
-\frac{40}{13} = -3\frac{1}{13} = -3.076923076923077
Share
Copied to clipboard
\frac{\frac{5}{2}}{-\frac{1}{2}+\frac{1}{2}\left(\frac{22}{2\times 11}+\frac{1}{2}\left(1+\frac{1}{2}\right)\times \frac{1}{2}\right)-1}
Divide \frac{1}{2} by \frac{11}{22} by multiplying \frac{1}{2} by the reciprocal of \frac{11}{22}.
\frac{\frac{5}{2}}{-\frac{1}{2}+\frac{1}{2}\left(\frac{22}{22}+\frac{1}{2}\left(1+\frac{1}{2}\right)\times \frac{1}{2}\right)-1}
Multiply 2 and 11 to get 22.
\frac{\frac{5}{2}}{-\frac{1}{2}+\frac{1}{2}\left(1+\frac{1}{2}\left(1+\frac{1}{2}\right)\times \frac{1}{2}\right)-1}
Divide 22 by 22 to get 1.
\frac{\frac{5}{2}}{-\frac{1}{2}+\frac{1}{2}\left(1+\frac{1}{2}\left(\frac{2}{2}+\frac{1}{2}\right)\times \frac{1}{2}\right)-1}
Convert 1 to fraction \frac{2}{2}.
\frac{\frac{5}{2}}{-\frac{1}{2}+\frac{1}{2}\left(1+\frac{1}{2}\times \frac{2+1}{2}\times \frac{1}{2}\right)-1}
Since \frac{2}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{\frac{5}{2}}{-\frac{1}{2}+\frac{1}{2}\left(1+\frac{1}{2}\times \frac{3}{2}\times \frac{1}{2}\right)-1}
Add 2 and 1 to get 3.
\frac{\frac{5}{2}}{-\frac{1}{2}+\frac{1}{2}\left(1+\frac{1\times 3}{2\times 2}\times \frac{1}{2}\right)-1}
Multiply \frac{1}{2} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{5}{2}}{-\frac{1}{2}+\frac{1}{2}\left(1+\frac{3}{4}\times \frac{1}{2}\right)-1}
Do the multiplications in the fraction \frac{1\times 3}{2\times 2}.
\frac{\frac{5}{2}}{-\frac{1}{2}+\frac{1}{2}\left(1+\frac{3\times 1}{4\times 2}\right)-1}
Multiply \frac{3}{4} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{5}{2}}{-\frac{1}{2}+\frac{1}{2}\left(1+\frac{3}{8}\right)-1}
Do the multiplications in the fraction \frac{3\times 1}{4\times 2}.
\frac{\frac{5}{2}}{-\frac{1}{2}+\frac{1}{2}\left(\frac{8}{8}+\frac{3}{8}\right)-1}
Convert 1 to fraction \frac{8}{8}.
\frac{\frac{5}{2}}{-\frac{1}{2}+\frac{1}{2}\times \frac{8+3}{8}-1}
Since \frac{8}{8} and \frac{3}{8} have the same denominator, add them by adding their numerators.
\frac{\frac{5}{2}}{-\frac{1}{2}+\frac{1}{2}\times \frac{11}{8}-1}
Add 8 and 3 to get 11.
\frac{\frac{5}{2}}{-\frac{1}{2}+\frac{1\times 11}{2\times 8}-1}
Multiply \frac{1}{2} times \frac{11}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{5}{2}}{-\frac{1}{2}+\frac{11}{16}-1}
Do the multiplications in the fraction \frac{1\times 11}{2\times 8}.
\frac{\frac{5}{2}}{-\frac{8}{16}+\frac{11}{16}-1}
Least common multiple of 2 and 16 is 16. Convert -\frac{1}{2} and \frac{11}{16} to fractions with denominator 16.
\frac{\frac{5}{2}}{\frac{-8+11}{16}-1}
Since -\frac{8}{16} and \frac{11}{16} have the same denominator, add them by adding their numerators.
\frac{\frac{5}{2}}{\frac{3}{16}-1}
Add -8 and 11 to get 3.
\frac{\frac{5}{2}}{\frac{3}{16}-\frac{16}{16}}
Convert 1 to fraction \frac{16}{16}.
\frac{\frac{5}{2}}{\frac{3-16}{16}}
Since \frac{3}{16} and \frac{16}{16} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{5}{2}}{-\frac{13}{16}}
Subtract 16 from 3 to get -13.
\frac{5}{2}\left(-\frac{16}{13}\right)
Divide \frac{5}{2} by -\frac{13}{16} by multiplying \frac{5}{2} by the reciprocal of -\frac{13}{16}.
\frac{5\left(-16\right)}{2\times 13}
Multiply \frac{5}{2} times -\frac{16}{13} by multiplying numerator times numerator and denominator times denominator.
\frac{-80}{26}
Do the multiplications in the fraction \frac{5\left(-16\right)}{2\times 13}.
-\frac{40}{13}
Reduce the fraction \frac{-80}{26} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}