Solve for x
x=-\frac{9}{17}\approx -0.529411765
Graph
Share
Copied to clipboard
2\left(x+1\right)\times \frac{5}{2}+2\left(x-3\right)=-10\left(x+1\right)
Variable x cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by 2\left(x+1\right), the least common multiple of 2,x+1.
\left(2x+2\right)\times \frac{5}{2}+2\left(x-3\right)=-10\left(x+1\right)
Use the distributive property to multiply 2 by x+1.
5x+5+2\left(x-3\right)=-10\left(x+1\right)
Use the distributive property to multiply 2x+2 by \frac{5}{2}.
5x+5+2x-6=-10\left(x+1\right)
Use the distributive property to multiply 2 by x-3.
7x+5-6=-10\left(x+1\right)
Combine 5x and 2x to get 7x.
7x-1=-10\left(x+1\right)
Subtract 6 from 5 to get -1.
7x-1=-10x-10
Use the distributive property to multiply -10 by x+1.
7x-1+10x=-10
Add 10x to both sides.
17x-1=-10
Combine 7x and 10x to get 17x.
17x=-10+1
Add 1 to both sides.
17x=-9
Add -10 and 1 to get -9.
x=\frac{-9}{17}
Divide both sides by 17.
x=-\frac{9}{17}
Fraction \frac{-9}{17} can be rewritten as -\frac{9}{17} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}