Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{5\left(2\sqrt{7}+2\sqrt{5}\right)}{\left(2\sqrt{7}-2\sqrt{5}\right)\left(2\sqrt{7}+2\sqrt{5}\right)}
Rationalize the denominator of \frac{5}{2\sqrt{7}-2\sqrt{5}} by multiplying numerator and denominator by 2\sqrt{7}+2\sqrt{5}.
\frac{5\left(2\sqrt{7}+2\sqrt{5}\right)}{\left(2\sqrt{7}\right)^{2}-\left(-2\sqrt{5}\right)^{2}}
Consider \left(2\sqrt{7}-2\sqrt{5}\right)\left(2\sqrt{7}+2\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5\left(2\sqrt{7}+2\sqrt{5}\right)}{2^{2}\left(\sqrt{7}\right)^{2}-\left(-2\sqrt{5}\right)^{2}}
Expand \left(2\sqrt{7}\right)^{2}.
\frac{5\left(2\sqrt{7}+2\sqrt{5}\right)}{4\left(\sqrt{7}\right)^{2}-\left(-2\sqrt{5}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{5\left(2\sqrt{7}+2\sqrt{5}\right)}{4\times 7-\left(-2\sqrt{5}\right)^{2}}
The square of \sqrt{7} is 7.
\frac{5\left(2\sqrt{7}+2\sqrt{5}\right)}{28-\left(-2\sqrt{5}\right)^{2}}
Multiply 4 and 7 to get 28.
\frac{5\left(2\sqrt{7}+2\sqrt{5}\right)}{28-\left(-2\right)^{2}\left(\sqrt{5}\right)^{2}}
Expand \left(-2\sqrt{5}\right)^{2}.
\frac{5\left(2\sqrt{7}+2\sqrt{5}\right)}{28-4\left(\sqrt{5}\right)^{2}}
Calculate -2 to the power of 2 and get 4.
\frac{5\left(2\sqrt{7}+2\sqrt{5}\right)}{28-4\times 5}
The square of \sqrt{5} is 5.
\frac{5\left(2\sqrt{7}+2\sqrt{5}\right)}{28-20}
Multiply 4 and 5 to get 20.
\frac{5\left(2\sqrt{7}+2\sqrt{5}\right)}{8}
Subtract 20 from 28 to get 8.
\frac{10\sqrt{7}+10\sqrt{5}}{8}
Use the distributive property to multiply 5 by 2\sqrt{7}+2\sqrt{5}.