Solve for a
a=5b-32
b\neq 6
Solve for b
b=\frac{a+32}{5}
a\neq -2
Share
Copied to clipboard
\left(b-6\right)\times 5=a+2
Variable a cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by \left(b-6\right)\left(a+2\right), the least common multiple of 2+a,b-6.
5b-30=a+2
Use the distributive property to multiply b-6 by 5.
a+2=5b-30
Swap sides so that all variable terms are on the left hand side.
a=5b-30-2
Subtract 2 from both sides.
a=5b-32
Subtract 2 from -30 to get -32.
a=5b-32\text{, }a\neq -2
Variable a cannot be equal to -2.
\left(b-6\right)\times 5=a+2
Variable b cannot be equal to 6 since division by zero is not defined. Multiply both sides of the equation by \left(b-6\right)\left(a+2\right), the least common multiple of 2+a,b-6.
5b-30=a+2
Use the distributive property to multiply b-6 by 5.
5b=a+2+30
Add 30 to both sides.
5b=a+32
Add 2 and 30 to get 32.
\frac{5b}{5}=\frac{a+32}{5}
Divide both sides by 5.
b=\frac{a+32}{5}
Dividing by 5 undoes the multiplication by 5.
b=\frac{a+32}{5}\text{, }b\neq 6
Variable b cannot be equal to 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}