Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{5\left(2-\sqrt{10}\right)}{\left(2+\sqrt{10}\right)\left(2-\sqrt{10}\right)}
Rationalize the denominator of \frac{5}{2+\sqrt{10}} by multiplying numerator and denominator by 2-\sqrt{10}.
\frac{5\left(2-\sqrt{10}\right)}{2^{2}-\left(\sqrt{10}\right)^{2}}
Consider \left(2+\sqrt{10}\right)\left(2-\sqrt{10}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5\left(2-\sqrt{10}\right)}{4-10}
Square 2. Square \sqrt{10}.
\frac{5\left(2-\sqrt{10}\right)}{-6}
Subtract 10 from 4 to get -6.
\frac{10-5\sqrt{10}}{-6}
Use the distributive property to multiply 5 by 2-\sqrt{10}.