Evaluate
-\frac{151}{60}\approx -2.516666667
Factor
-\frac{151}{60} = -2\frac{31}{60} = -2.5166666666666666
Share
Copied to clipboard
\frac{5}{12}+\left(\frac{5}{10}+\frac{6}{10}\right)\times \frac{-8}{3}
Least common multiple of 2 and 5 is 10. Convert \frac{1}{2} and \frac{3}{5} to fractions with denominator 10.
\frac{5}{12}+\frac{5+6}{10}\times \frac{-8}{3}
Since \frac{5}{10} and \frac{6}{10} have the same denominator, add them by adding their numerators.
\frac{5}{12}+\frac{11}{10}\times \frac{-8}{3}
Add 5 and 6 to get 11.
\frac{5}{12}+\frac{11}{10}\left(-\frac{8}{3}\right)
Fraction \frac{-8}{3} can be rewritten as -\frac{8}{3} by extracting the negative sign.
\frac{5}{12}+\frac{11\left(-8\right)}{10\times 3}
Multiply \frac{11}{10} times -\frac{8}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{5}{12}+\frac{-88}{30}
Do the multiplications in the fraction \frac{11\left(-8\right)}{10\times 3}.
\frac{5}{12}-\frac{44}{15}
Reduce the fraction \frac{-88}{30} to lowest terms by extracting and canceling out 2.
\frac{25}{60}-\frac{176}{60}
Least common multiple of 12 and 15 is 60. Convert \frac{5}{12} and \frac{44}{15} to fractions with denominator 60.
\frac{25-176}{60}
Since \frac{25}{60} and \frac{176}{60} have the same denominator, subtract them by subtracting their numerators.
-\frac{151}{60}
Subtract 176 from 25 to get -151.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}