Solve for t
t=0
Share
Copied to clipboard
\frac{5}{11}t+\frac{5}{11}\left(-1\right)-\frac{61}{11}=-6
Use the distributive property to multiply \frac{5}{11} by t-1.
\frac{5}{11}t-\frac{5}{11}-\frac{61}{11}=-6
Multiply \frac{5}{11} and -1 to get -\frac{5}{11}.
\frac{5}{11}t+\frac{-5-61}{11}=-6
Since -\frac{5}{11} and \frac{61}{11} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{11}t+\frac{-66}{11}=-6
Subtract 61 from -5 to get -66.
\frac{5}{11}t-6=-6
Divide -66 by 11 to get -6.
\frac{5}{11}t=-6+6
Add 6 to both sides.
\frac{5}{11}t=0
Add -6 and 6 to get 0.
t=0
Product of two numbers is equal to 0 if at least one of them is 0. Since \frac{5}{11} is not equal to 0, t must be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}