Evaluate
\frac{31}{8}=3.875
Factor
\frac{31}{2 ^ {3}} = 3\frac{7}{8} = 3.875
Share
Copied to clipboard
\frac{5}{1+\frac{1}{3+\frac{1}{\frac{8}{4}+\frac{1}{4}}}}
Convert 2 to fraction \frac{8}{4}.
\frac{5}{1+\frac{1}{3+\frac{1}{\frac{8+1}{4}}}}
Since \frac{8}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
\frac{5}{1+\frac{1}{3+\frac{1}{\frac{9}{4}}}}
Add 8 and 1 to get 9.
\frac{5}{1+\frac{1}{3+1\times \frac{4}{9}}}
Divide 1 by \frac{9}{4} by multiplying 1 by the reciprocal of \frac{9}{4}.
\frac{5}{1+\frac{1}{3+\frac{4}{9}}}
Multiply 1 and \frac{4}{9} to get \frac{4}{9}.
\frac{5}{1+\frac{1}{\frac{27}{9}+\frac{4}{9}}}
Convert 3 to fraction \frac{27}{9}.
\frac{5}{1+\frac{1}{\frac{27+4}{9}}}
Since \frac{27}{9} and \frac{4}{9} have the same denominator, add them by adding their numerators.
\frac{5}{1+\frac{1}{\frac{31}{9}}}
Add 27 and 4 to get 31.
\frac{5}{1+1\times \frac{9}{31}}
Divide 1 by \frac{31}{9} by multiplying 1 by the reciprocal of \frac{31}{9}.
\frac{5}{1+\frac{9}{31}}
Multiply 1 and \frac{9}{31} to get \frac{9}{31}.
\frac{5}{\frac{31}{31}+\frac{9}{31}}
Convert 1 to fraction \frac{31}{31}.
\frac{5}{\frac{31+9}{31}}
Since \frac{31}{31} and \frac{9}{31} have the same denominator, add them by adding their numerators.
\frac{5}{\frac{40}{31}}
Add 31 and 9 to get 40.
5\times \frac{31}{40}
Divide 5 by \frac{40}{31} by multiplying 5 by the reciprocal of \frac{40}{31}.
\frac{5\times 31}{40}
Express 5\times \frac{31}{40} as a single fraction.
\frac{155}{40}
Multiply 5 and 31 to get 155.
\frac{31}{8}
Reduce the fraction \frac{155}{40} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}