Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{5\left(-5+3\sqrt{3}\right)}{\left(-5-3\sqrt{3}\right)\left(-5+3\sqrt{3}\right)}
Rationalize the denominator of \frac{5}{-5-3\sqrt{3}} by multiplying numerator and denominator by -5+3\sqrt{3}.
\frac{5\left(-5+3\sqrt{3}\right)}{\left(-5\right)^{2}-\left(-3\sqrt{3}\right)^{2}}
Consider \left(-5-3\sqrt{3}\right)\left(-5+3\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5\left(-5+3\sqrt{3}\right)}{25-\left(-3\sqrt{3}\right)^{2}}
Calculate -5 to the power of 2 and get 25.
\frac{5\left(-5+3\sqrt{3}\right)}{25-\left(-3\right)^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(-3\sqrt{3}\right)^{2}.
\frac{5\left(-5+3\sqrt{3}\right)}{25-9\left(\sqrt{3}\right)^{2}}
Calculate -3 to the power of 2 and get 9.
\frac{5\left(-5+3\sqrt{3}\right)}{25-9\times 3}
The square of \sqrt{3} is 3.
\frac{5\left(-5+3\sqrt{3}\right)}{25-27}
Multiply 9 and 3 to get 27.
\frac{5\left(-5+3\sqrt{3}\right)}{-2}
Subtract 27 from 25 to get -2.
\frac{-25+15\sqrt{3}}{-2}
Use the distributive property to multiply 5 by -5+3\sqrt{3}.