Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{5}{2\sqrt{2}-\sqrt{3}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{5\left(2\sqrt{2}+\sqrt{3}\right)}{\left(2\sqrt{2}-\sqrt{3}\right)\left(2\sqrt{2}+\sqrt{3}\right)}
Rationalize the denominator of \frac{5}{2\sqrt{2}-\sqrt{3}} by multiplying numerator and denominator by 2\sqrt{2}+\sqrt{3}.
\frac{5\left(2\sqrt{2}+\sqrt{3}\right)}{\left(2\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(2\sqrt{2}-\sqrt{3}\right)\left(2\sqrt{2}+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5\left(2\sqrt{2}+\sqrt{3}\right)}{2^{2}\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Expand \left(2\sqrt{2}\right)^{2}.
\frac{5\left(2\sqrt{2}+\sqrt{3}\right)}{4\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{5\left(2\sqrt{2}+\sqrt{3}\right)}{4\times 2-\left(\sqrt{3}\right)^{2}}
The square of \sqrt{2} is 2.
\frac{5\left(2\sqrt{2}+\sqrt{3}\right)}{8-\left(\sqrt{3}\right)^{2}}
Multiply 4 and 2 to get 8.
\frac{5\left(2\sqrt{2}+\sqrt{3}\right)}{8-3}
The square of \sqrt{3} is 3.
\frac{5\left(2\sqrt{2}+\sqrt{3}\right)}{5}
Subtract 3 from 8 to get 5.
2\sqrt{2}+\sqrt{3}
Cancel out 5 and 5.