Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{5\left(\sqrt{5}+5\right)}{\left(\sqrt{5}-5\right)\left(\sqrt{5}+5\right)}
Rationalize the denominator of \frac{5}{\sqrt{5}-5} by multiplying numerator and denominator by \sqrt{5}+5.
\frac{5\left(\sqrt{5}+5\right)}{\left(\sqrt{5}\right)^{2}-5^{2}}
Consider \left(\sqrt{5}-5\right)\left(\sqrt{5}+5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5\left(\sqrt{5}+5\right)}{5-25}
Square \sqrt{5}. Square 5.
\frac{5\left(\sqrt{5}+5\right)}{-20}
Subtract 25 from 5 to get -20.
-\frac{1}{4}\left(\sqrt{5}+5\right)
Divide 5\left(\sqrt{5}+5\right) by -20 to get -\frac{1}{4}\left(\sqrt{5}+5\right).
-\frac{1}{4}\sqrt{5}-\frac{1}{4}\times 5
Use the distributive property to multiply -\frac{1}{4} by \sqrt{5}+5.
-\frac{1}{4}\sqrt{5}+\frac{-5}{4}
Express -\frac{1}{4}\times 5 as a single fraction.
-\frac{1}{4}\sqrt{5}-\frac{5}{4}
Fraction \frac{-5}{4} can be rewritten as -\frac{5}{4} by extracting the negative sign.