Verify
true
Share
Copied to clipboard
\frac{5}{\sqrt{3}-\sqrt{5}}=\frac{5}{\sqrt{3}-\sqrt{5}}\times 1\text{ and }\frac{5}{\sqrt{3}-\sqrt{5}}\times \frac{\sqrt{3}+\sqrt{5}}{\sqrt{3}+\sqrt{5}}=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{3-5}
Divide \sqrt{3}+\sqrt{5} by \sqrt{3}+\sqrt{5} to get 1.
\frac{5}{\sqrt{3}-\sqrt{5}}=\frac{5}{\sqrt{3}-\sqrt{5}}\times 1\text{ and }\frac{5}{\sqrt{3}-\sqrt{5}}\times 1=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{3-5}
Divide \sqrt{3}+\sqrt{5} by \sqrt{3}+\sqrt{5} to get 1.
\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{\left(\sqrt{3}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}\right)}=\frac{5}{\sqrt{3}-\sqrt{5}}\times 1\text{ and }\frac{5}{\sqrt{3}-\sqrt{5}}\times 1=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{3-5}
Rationalize the denominator of \frac{5}{\sqrt{3}-\sqrt{5}} by multiplying numerator and denominator by \sqrt{3}+\sqrt{5}.
\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}}=\frac{5}{\sqrt{3}-\sqrt{5}}\times 1\text{ and }\frac{5}{\sqrt{3}-\sqrt{5}}\times 1=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{3-5}
Consider \left(\sqrt{3}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{3-5}=\frac{5}{\sqrt{3}-\sqrt{5}}\times 1\text{ and }\frac{5}{\sqrt{3}-\sqrt{5}}\times 1=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{3-5}
Square \sqrt{3}. Square \sqrt{5}.
\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}=\frac{5}{\sqrt{3}-\sqrt{5}}\times 1\text{ and }\frac{5}{\sqrt{3}-\sqrt{5}}\times 1=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{3-5}
Subtract 5 from 3 to get -2.
\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{\left(\sqrt{3}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}\right)}\times 1\text{ and }\frac{5}{\sqrt{3}-\sqrt{5}}\times 1=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{3-5}
Rationalize the denominator of \frac{5}{\sqrt{3}-\sqrt{5}} by multiplying numerator and denominator by \sqrt{3}+\sqrt{5}.
\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}}\times 1\text{ and }\frac{5}{\sqrt{3}-\sqrt{5}}\times 1=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{3-5}
Consider \left(\sqrt{3}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{3-5}\times 1\text{ and }\frac{5}{\sqrt{3}-\sqrt{5}}\times 1=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{3-5}
Square \sqrt{3}. Square \sqrt{5}.
\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}\times 1\text{ and }\frac{5}{\sqrt{3}-\sqrt{5}}\times 1=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{3-5}
Subtract 5 from 3 to get -2.
\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}\text{ and }\frac{5}{\sqrt{3}-\sqrt{5}}\times 1=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{3-5}
Express \frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}\times 1 as a single fraction.
\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}\text{ and }\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{\left(\sqrt{3}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}\right)}\times 1=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{3-5}
Rationalize the denominator of \frac{5}{\sqrt{3}-\sqrt{5}} by multiplying numerator and denominator by \sqrt{3}+\sqrt{5}.
\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}\text{ and }\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}}\times 1=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{3-5}
Consider \left(\sqrt{3}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}\text{ and }\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{3-5}\times 1=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{3-5}
Square \sqrt{3}. Square \sqrt{5}.
\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}\text{ and }\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}\times 1=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{3-5}
Subtract 5 from 3 to get -2.
\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}\text{ and }\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{3-5}
Express \frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}\times 1 as a single fraction.
\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}\text{ and }\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}
Subtract 5 from 3 to get -2.
\frac{5\sqrt{3}+5\sqrt{5}}{-2}=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}\text{ and }\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}
Use the distributive property to multiply 5 by \sqrt{3}+\sqrt{5}.
\frac{5\sqrt{3}+5\sqrt{5}}{-2}=\frac{5\sqrt{3}+5\sqrt{5}}{-2}\text{ and }\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}
Use the distributive property to multiply 5 by \sqrt{3}+\sqrt{5}.
\frac{5\sqrt{3}+5\sqrt{5}}{-2}-\frac{5\sqrt{3}+5\sqrt{5}}{-2}=0\text{ and }\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}
Subtract \frac{5\sqrt{3}+5\sqrt{5}}{-2} from both sides.
0=0\text{ and }\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}
Combine \frac{5\sqrt{3}+5\sqrt{5}}{-2} and -\frac{5\sqrt{3}+5\sqrt{5}}{-2} to get 0.
\text{true}\text{ and }\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}
Compare 0 and 0.
\text{true}\text{ and }\frac{5\sqrt{3}+5\sqrt{5}}{-2}=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}
Use the distributive property to multiply 5 by \sqrt{3}+\sqrt{5}.
\text{true}\text{ and }\frac{5\sqrt{3}+5\sqrt{5}}{-2}=\frac{5\sqrt{3}+5\sqrt{5}}{-2}
Use the distributive property to multiply 5 by \sqrt{3}+\sqrt{5}.
\text{true}\text{ and }\frac{5\sqrt{3}+5\sqrt{5}}{-2}-\frac{5\sqrt{3}+5\sqrt{5}}{-2}=0
Subtract \frac{5\sqrt{3}+5\sqrt{5}}{-2} from both sides.
\text{true}\text{ and }0=0
Combine \frac{5\sqrt{3}+5\sqrt{5}}{-2} and -\frac{5\sqrt{3}+5\sqrt{5}}{-2} to get 0.
\text{true}\text{ and }\text{true}
Compare 0 and 0.
\text{true}
The conjunction of \text{true} and \text{true} is \text{true}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}