Skip to main content
Verify
true
Tick mark Image

Share

\frac{5}{\sqrt{3}-\sqrt{5}}=\frac{5}{\sqrt{3}-\sqrt{5}}\times 1\text{ and }\frac{5}{\sqrt{3}-\sqrt{5}}\times \frac{\sqrt{3}+\sqrt{5}}{\sqrt{3}+\sqrt{5}}=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{3-5}
Divide \sqrt{3}+\sqrt{5} by \sqrt{3}+\sqrt{5} to get 1.
\frac{5}{\sqrt{3}-\sqrt{5}}=\frac{5}{\sqrt{3}-\sqrt{5}}\times 1\text{ and }\frac{5}{\sqrt{3}-\sqrt{5}}\times 1=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{3-5}
Divide \sqrt{3}+\sqrt{5} by \sqrt{3}+\sqrt{5} to get 1.
\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{\left(\sqrt{3}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}\right)}=\frac{5}{\sqrt{3}-\sqrt{5}}\times 1\text{ and }\frac{5}{\sqrt{3}-\sqrt{5}}\times 1=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{3-5}
Rationalize the denominator of \frac{5}{\sqrt{3}-\sqrt{5}} by multiplying numerator and denominator by \sqrt{3}+\sqrt{5}.
\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}}=\frac{5}{\sqrt{3}-\sqrt{5}}\times 1\text{ and }\frac{5}{\sqrt{3}-\sqrt{5}}\times 1=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{3-5}
Consider \left(\sqrt{3}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{3-5}=\frac{5}{\sqrt{3}-\sqrt{5}}\times 1\text{ and }\frac{5}{\sqrt{3}-\sqrt{5}}\times 1=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{3-5}
Square \sqrt{3}. Square \sqrt{5}.
\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}=\frac{5}{\sqrt{3}-\sqrt{5}}\times 1\text{ and }\frac{5}{\sqrt{3}-\sqrt{5}}\times 1=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{3-5}
Subtract 5 from 3 to get -2.
\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{\left(\sqrt{3}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}\right)}\times 1\text{ and }\frac{5}{\sqrt{3}-\sqrt{5}}\times 1=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{3-5}
Rationalize the denominator of \frac{5}{\sqrt{3}-\sqrt{5}} by multiplying numerator and denominator by \sqrt{3}+\sqrt{5}.
\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}}\times 1\text{ and }\frac{5}{\sqrt{3}-\sqrt{5}}\times 1=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{3-5}
Consider \left(\sqrt{3}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{3-5}\times 1\text{ and }\frac{5}{\sqrt{3}-\sqrt{5}}\times 1=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{3-5}
Square \sqrt{3}. Square \sqrt{5}.
\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}\times 1\text{ and }\frac{5}{\sqrt{3}-\sqrt{5}}\times 1=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{3-5}
Subtract 5 from 3 to get -2.
\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}\text{ and }\frac{5}{\sqrt{3}-\sqrt{5}}\times 1=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{3-5}
Express \frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}\times 1 as a single fraction.
\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}\text{ and }\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{\left(\sqrt{3}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}\right)}\times 1=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{3-5}
Rationalize the denominator of \frac{5}{\sqrt{3}-\sqrt{5}} by multiplying numerator and denominator by \sqrt{3}+\sqrt{5}.
\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}\text{ and }\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}}\times 1=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{3-5}
Consider \left(\sqrt{3}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}\text{ and }\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{3-5}\times 1=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{3-5}
Square \sqrt{3}. Square \sqrt{5}.
\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}\text{ and }\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}\times 1=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{3-5}
Subtract 5 from 3 to get -2.
\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}\text{ and }\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{3-5}
Express \frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}\times 1 as a single fraction.
\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}\text{ and }\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}
Subtract 5 from 3 to get -2.
\frac{5\sqrt{3}+5\sqrt{5}}{-2}=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}\text{ and }\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}
Use the distributive property to multiply 5 by \sqrt{3}+\sqrt{5}.
\frac{5\sqrt{3}+5\sqrt{5}}{-2}=\frac{5\sqrt{3}+5\sqrt{5}}{-2}\text{ and }\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}
Use the distributive property to multiply 5 by \sqrt{3}+\sqrt{5}.
\frac{5\sqrt{3}+5\sqrt{5}}{-2}-\frac{5\sqrt{3}+5\sqrt{5}}{-2}=0\text{ and }\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}
Subtract \frac{5\sqrt{3}+5\sqrt{5}}{-2} from both sides.
0=0\text{ and }\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}
Combine \frac{5\sqrt{3}+5\sqrt{5}}{-2} and -\frac{5\sqrt{3}+5\sqrt{5}}{-2} to get 0.
\text{true}\text{ and }\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}
Compare 0 and 0.
\text{true}\text{ and }\frac{5\sqrt{3}+5\sqrt{5}}{-2}=\frac{5\left(\sqrt{3}+\sqrt{5}\right)}{-2}
Use the distributive property to multiply 5 by \sqrt{3}+\sqrt{5}.
\text{true}\text{ and }\frac{5\sqrt{3}+5\sqrt{5}}{-2}=\frac{5\sqrt{3}+5\sqrt{5}}{-2}
Use the distributive property to multiply 5 by \sqrt{3}+\sqrt{5}.
\text{true}\text{ and }\frac{5\sqrt{3}+5\sqrt{5}}{-2}-\frac{5\sqrt{3}+5\sqrt{5}}{-2}=0
Subtract \frac{5\sqrt{3}+5\sqrt{5}}{-2} from both sides.
\text{true}\text{ and }0=0
Combine \frac{5\sqrt{3}+5\sqrt{5}}{-2} and -\frac{5\sqrt{3}+5\sqrt{5}}{-2} to get 0.
\text{true}\text{ and }\text{true}
Compare 0 and 0.
\text{true}
The conjunction of \text{true} and \text{true} is \text{true}.