Evaluate
\frac{30}{37}\approx 0.810810811
Factor
\frac{2 \cdot 3 \cdot 5}{37} = 0.8108108108108109
Share
Copied to clipboard
\frac{5}{\sqrt{\frac{36+1}{36}}\sqrt{\frac{1\times 37+12}{37}}+\frac{\sqrt{75}}{\sqrt{3}}}
Multiply 1 and 36 to get 36.
\frac{5}{\sqrt{\frac{37}{36}}\sqrt{\frac{1\times 37+12}{37}}+\frac{\sqrt{75}}{\sqrt{3}}}
Add 36 and 1 to get 37.
\frac{5}{\frac{\sqrt{37}}{\sqrt{36}}\sqrt{\frac{1\times 37+12}{37}}+\frac{\sqrt{75}}{\sqrt{3}}}
Rewrite the square root of the division \sqrt{\frac{37}{36}} as the division of square roots \frac{\sqrt{37}}{\sqrt{36}}.
\frac{5}{\frac{\sqrt{37}}{6}\sqrt{\frac{1\times 37+12}{37}}+\frac{\sqrt{75}}{\sqrt{3}}}
Calculate the square root of 36 and get 6.
\frac{5}{\frac{\sqrt{37}}{6}\sqrt{\frac{37+12}{37}}+\frac{\sqrt{75}}{\sqrt{3}}}
Multiply 1 and 37 to get 37.
\frac{5}{\frac{\sqrt{37}}{6}\sqrt{\frac{49}{37}}+\frac{\sqrt{75}}{\sqrt{3}}}
Add 37 and 12 to get 49.
\frac{5}{\frac{\sqrt{37}}{6}\times \frac{\sqrt{49}}{\sqrt{37}}+\frac{\sqrt{75}}{\sqrt{3}}}
Rewrite the square root of the division \sqrt{\frac{49}{37}} as the division of square roots \frac{\sqrt{49}}{\sqrt{37}}.
\frac{5}{\frac{\sqrt{37}}{6}\times \frac{7}{\sqrt{37}}+\frac{\sqrt{75}}{\sqrt{3}}}
Calculate the square root of 49 and get 7.
\frac{5}{\frac{\sqrt{37}}{6}\times \frac{7\sqrt{37}}{\left(\sqrt{37}\right)^{2}}+\frac{\sqrt{75}}{\sqrt{3}}}
Rationalize the denominator of \frac{7}{\sqrt{37}} by multiplying numerator and denominator by \sqrt{37}.
\frac{5}{\frac{\sqrt{37}}{6}\times \frac{7\sqrt{37}}{37}+\frac{\sqrt{75}}{\sqrt{3}}}
The square of \sqrt{37} is 37.
\frac{5}{\frac{\sqrt{37}\times 7\sqrt{37}}{6\times 37}+\frac{\sqrt{75}}{\sqrt{3}}}
Multiply \frac{\sqrt{37}}{6} times \frac{7\sqrt{37}}{37} by multiplying numerator times numerator and denominator times denominator.
\frac{5}{\frac{\sqrt{37}\times 7\sqrt{37}}{6\times 37}+\sqrt{25}}
Rewrite the division of square roots \frac{\sqrt{75}}{\sqrt{3}} as the square root of the division \sqrt{\frac{75}{3}} and perform the division.
\frac{5}{\frac{\sqrt{37}\times 7\sqrt{37}}{6\times 37}+5}
Calculate the square root of 25 and get 5.
\frac{5}{\frac{\sqrt{37}\times 7\sqrt{37}}{6\times 37}+\frac{5\times 6\times 37}{6\times 37}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 5 times \frac{6\times 37}{6\times 37}.
\frac{5}{\frac{\sqrt{37}\times 7\sqrt{37}+5\times 6\times 37}{6\times 37}}
Since \frac{\sqrt{37}\times 7\sqrt{37}}{6\times 37} and \frac{5\times 6\times 37}{6\times 37} have the same denominator, add them by adding their numerators.
\frac{5}{\frac{259+1110}{6\times 37}}
Do the multiplications in \sqrt{37}\times 7\sqrt{37}+5\times 6\times 37.
\frac{5}{\frac{1369}{6\times 37}}
Do the calculations in 259+1110.
\frac{5\times 6\times 37}{1369}
Divide 5 by \frac{1369}{6\times 37} by multiplying 5 by the reciprocal of \frac{1369}{6\times 37}.
\frac{30\times 37}{1369}
Multiply 5 and 6 to get 30.
\frac{1110}{1369}
Multiply 30 and 37 to get 1110.
\frac{30}{37}
Reduce the fraction \frac{1110}{1369} to lowest terms by extracting and canceling out 37.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}