Evaluate
\frac{5\sqrt{3}}{2}\approx 4.330127019
Share
Copied to clipboard
\frac{5\sqrt{21}}{\sqrt{28}}
To multiply \sqrt{7} and \sqrt{3}, multiply the numbers under the square root.
\frac{5\sqrt{21}}{2\sqrt{7}}
Factor 28=2^{2}\times 7. Rewrite the square root of the product \sqrt{2^{2}\times 7} as the product of square roots \sqrt{2^{2}}\sqrt{7}. Take the square root of 2^{2}.
\frac{5\sqrt{21}\sqrt{7}}{2\left(\sqrt{7}\right)^{2}}
Rationalize the denominator of \frac{5\sqrt{21}}{2\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
\frac{5\sqrt{21}\sqrt{7}}{2\times 7}
The square of \sqrt{7} is 7.
\frac{5\sqrt{7}\sqrt{3}\sqrt{7}}{2\times 7}
Factor 21=7\times 3. Rewrite the square root of the product \sqrt{7\times 3} as the product of square roots \sqrt{7}\sqrt{3}.
\frac{5\times 7\sqrt{3}}{2\times 7}
Multiply \sqrt{7} and \sqrt{7} to get 7.
\frac{5\times 7\sqrt{3}}{14}
Multiply 2 and 7 to get 14.
\frac{35\sqrt{3}}{14}
Multiply 5 and 7 to get 35.
\frac{5}{2}\sqrt{3}
Divide 35\sqrt{3} by 14 to get \frac{5}{2}\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}