Evaluate
\frac{3\sqrt{15}}{4}-\frac{5\sqrt{3}}{4}+3-\sqrt{5}\approx 1.503606023
Factor
\frac{3 \sqrt{15} + 12 - 4 \sqrt{5} - 5 \sqrt{3}}{4} = 1.5036060226946768
Share
Copied to clipboard
\frac{\left(5\sqrt{3}+4\sqrt{5}\right)\left(5-3\sqrt{5}\right)}{\left(5+3\sqrt{5}\right)\left(5-3\sqrt{5}\right)}
Rationalize the denominator of \frac{5\sqrt{3}+4\sqrt{5}}{5+3\sqrt{5}} by multiplying numerator and denominator by 5-3\sqrt{5}.
\frac{\left(5\sqrt{3}+4\sqrt{5}\right)\left(5-3\sqrt{5}\right)}{5^{2}-\left(3\sqrt{5}\right)^{2}}
Consider \left(5+3\sqrt{5}\right)\left(5-3\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5\sqrt{3}+4\sqrt{5}\right)\left(5-3\sqrt{5}\right)}{25-\left(3\sqrt{5}\right)^{2}}
Calculate 5 to the power of 2 and get 25.
\frac{\left(5\sqrt{3}+4\sqrt{5}\right)\left(5-3\sqrt{5}\right)}{25-3^{2}\left(\sqrt{5}\right)^{2}}
Expand \left(3\sqrt{5}\right)^{2}.
\frac{\left(5\sqrt{3}+4\sqrt{5}\right)\left(5-3\sqrt{5}\right)}{25-9\left(\sqrt{5}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{\left(5\sqrt{3}+4\sqrt{5}\right)\left(5-3\sqrt{5}\right)}{25-9\times 5}
The square of \sqrt{5} is 5.
\frac{\left(5\sqrt{3}+4\sqrt{5}\right)\left(5-3\sqrt{5}\right)}{25-45}
Multiply 9 and 5 to get 45.
\frac{\left(5\sqrt{3}+4\sqrt{5}\right)\left(5-3\sqrt{5}\right)}{-20}
Subtract 45 from 25 to get -20.
\frac{25\sqrt{3}-15\sqrt{3}\sqrt{5}+20\sqrt{5}-12\left(\sqrt{5}\right)^{2}}{-20}
Apply the distributive property by multiplying each term of 5\sqrt{3}+4\sqrt{5} by each term of 5-3\sqrt{5}.
\frac{25\sqrt{3}-15\sqrt{15}+20\sqrt{5}-12\left(\sqrt{5}\right)^{2}}{-20}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
\frac{25\sqrt{3}-15\sqrt{15}+20\sqrt{5}-12\times 5}{-20}
The square of \sqrt{5} is 5.
\frac{25\sqrt{3}-15\sqrt{15}+20\sqrt{5}-60}{-20}
Multiply -12 and 5 to get -60.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}