Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(5\sqrt{3}+4\sqrt{5}\right)\left(5-3\sqrt{5}\right)}{\left(5+3\sqrt{5}\right)\left(5-3\sqrt{5}\right)}
Rationalize the denominator of \frac{5\sqrt{3}+4\sqrt{5}}{5+3\sqrt{5}} by multiplying numerator and denominator by 5-3\sqrt{5}.
\frac{\left(5\sqrt{3}+4\sqrt{5}\right)\left(5-3\sqrt{5}\right)}{5^{2}-\left(3\sqrt{5}\right)^{2}}
Consider \left(5+3\sqrt{5}\right)\left(5-3\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5\sqrt{3}+4\sqrt{5}\right)\left(5-3\sqrt{5}\right)}{25-\left(3\sqrt{5}\right)^{2}}
Calculate 5 to the power of 2 and get 25.
\frac{\left(5\sqrt{3}+4\sqrt{5}\right)\left(5-3\sqrt{5}\right)}{25-3^{2}\left(\sqrt{5}\right)^{2}}
Expand \left(3\sqrt{5}\right)^{2}.
\frac{\left(5\sqrt{3}+4\sqrt{5}\right)\left(5-3\sqrt{5}\right)}{25-9\left(\sqrt{5}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{\left(5\sqrt{3}+4\sqrt{5}\right)\left(5-3\sqrt{5}\right)}{25-9\times 5}
The square of \sqrt{5} is 5.
\frac{\left(5\sqrt{3}+4\sqrt{5}\right)\left(5-3\sqrt{5}\right)}{25-45}
Multiply 9 and 5 to get 45.
\frac{\left(5\sqrt{3}+4\sqrt{5}\right)\left(5-3\sqrt{5}\right)}{-20}
Subtract 45 from 25 to get -20.
\frac{25\sqrt{3}-15\sqrt{3}\sqrt{5}+20\sqrt{5}-12\left(\sqrt{5}\right)^{2}}{-20}
Apply the distributive property by multiplying each term of 5\sqrt{3}+4\sqrt{5} by each term of 5-3\sqrt{5}.
\frac{25\sqrt{3}-15\sqrt{15}+20\sqrt{5}-12\left(\sqrt{5}\right)^{2}}{-20}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
\frac{25\sqrt{3}-15\sqrt{15}+20\sqrt{5}-12\times 5}{-20}
The square of \sqrt{5} is 5.
\frac{25\sqrt{3}-15\sqrt{15}+20\sqrt{5}-60}{-20}
Multiply -12 and 5 to get -60.