Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(5\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}
Rationalize the denominator of \frac{5\sqrt{3}+\sqrt{2}}{\sqrt{3}+\sqrt{2}} by multiplying numerator and denominator by \sqrt{3}-\sqrt{2}.
\frac{\left(5\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}{3-2}
Square \sqrt{3}. Square \sqrt{2}.
\frac{\left(5\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}{1}
Subtract 2 from 3 to get 1.
\left(5\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)
Anything divided by one gives itself.
5\left(\sqrt{3}\right)^{2}-5\sqrt{3}\sqrt{2}+\sqrt{2}\sqrt{3}-\left(\sqrt{2}\right)^{2}
Apply the distributive property by multiplying each term of 5\sqrt{3}+\sqrt{2} by each term of \sqrt{3}-\sqrt{2}.
5\times 3-5\sqrt{3}\sqrt{2}+\sqrt{2}\sqrt{3}-\left(\sqrt{2}\right)^{2}
The square of \sqrt{3} is 3.
15-5\sqrt{3}\sqrt{2}+\sqrt{2}\sqrt{3}-\left(\sqrt{2}\right)^{2}
Multiply 5 and 3 to get 15.
15-5\sqrt{6}+\sqrt{2}\sqrt{3}-\left(\sqrt{2}\right)^{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
15-5\sqrt{6}+\sqrt{6}-\left(\sqrt{2}\right)^{2}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
15-4\sqrt{6}-\left(\sqrt{2}\right)^{2}
Combine -5\sqrt{6} and \sqrt{6} to get -4\sqrt{6}.
15-4\sqrt{6}-2
The square of \sqrt{2} is 2.
13-4\sqrt{6}
Subtract 2 from 15 to get 13.