Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{5\sqrt{2}\left(\sqrt{5}+5\sqrt{3}\right)}{\left(\sqrt{5}-5\sqrt{3}\right)\left(\sqrt{5}+5\sqrt{3}\right)}
Rationalize the denominator of \frac{5\sqrt{2}}{\sqrt{5}-5\sqrt{3}} by multiplying numerator and denominator by \sqrt{5}+5\sqrt{3}.
\frac{5\sqrt{2}\left(\sqrt{5}+5\sqrt{3}\right)}{\left(\sqrt{5}\right)^{2}-\left(-5\sqrt{3}\right)^{2}}
Consider \left(\sqrt{5}-5\sqrt{3}\right)\left(\sqrt{5}+5\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{5\sqrt{2}\left(\sqrt{5}+5\sqrt{3}\right)}{5-\left(-5\sqrt{3}\right)^{2}}
The square of \sqrt{5} is 5.
\frac{5\sqrt{2}\left(\sqrt{5}+5\sqrt{3}\right)}{5-\left(-5\right)^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(-5\sqrt{3}\right)^{2}.
\frac{5\sqrt{2}\left(\sqrt{5}+5\sqrt{3}\right)}{5-25\left(\sqrt{3}\right)^{2}}
Calculate -5 to the power of 2 and get 25.
\frac{5\sqrt{2}\left(\sqrt{5}+5\sqrt{3}\right)}{5-25\times 3}
The square of \sqrt{3} is 3.
\frac{5\sqrt{2}\left(\sqrt{5}+5\sqrt{3}\right)}{5-75}
Multiply 25 and 3 to get 75.
\frac{5\sqrt{2}\left(\sqrt{5}+5\sqrt{3}\right)}{-70}
Subtract 75 from 5 to get -70.
-\frac{1}{14}\sqrt{2}\left(\sqrt{5}+5\sqrt{3}\right)
Divide 5\sqrt{2}\left(\sqrt{5}+5\sqrt{3}\right) by -70 to get -\frac{1}{14}\sqrt{2}\left(\sqrt{5}+5\sqrt{3}\right).
-\frac{1}{14}\sqrt{2}\sqrt{5}-\frac{1}{14}\sqrt{2}\times 5\sqrt{3}
Use the distributive property to multiply -\frac{1}{14}\sqrt{2} by \sqrt{5}+5\sqrt{3}.
-\frac{1}{14}\sqrt{10}-\frac{1}{14}\sqrt{2}\times 5\sqrt{3}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
-\frac{1}{14}\sqrt{10}+\frac{-5}{14}\sqrt{2}\sqrt{3}
Express -\frac{1}{14}\times 5 as a single fraction.
-\frac{1}{14}\sqrt{10}-\frac{5}{14}\sqrt{2}\sqrt{3}
Fraction \frac{-5}{14} can be rewritten as -\frac{5}{14} by extracting the negative sign.
-\frac{1}{14}\sqrt{10}-\frac{5}{14}\sqrt{6}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.