Solve for x
x=20\sqrt{3}+60\approx 94.641016151
Graph
Share
Copied to clipboard
2\times 5\sqrt{2}\sqrt{3}=\frac{x}{\sqrt{2}\left(\sqrt{3}+1\right)}
Multiply both sides of the equation by 4, the least common multiple of 2,4.
10\sqrt{2}\sqrt{3}=\frac{x}{\sqrt{2}\left(\sqrt{3}+1\right)}
Multiply 2 and 5 to get 10.
10\sqrt{6}=\frac{x}{\sqrt{2}\left(\sqrt{3}+1\right)}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{x}{\sqrt{2}\left(\sqrt{3}+1\right)}=10\sqrt{6}
Swap sides so that all variable terms are on the left hand side.
\frac{1}{\sqrt{2}\left(\sqrt{3}+1\right)}x=10\sqrt{6}
The equation is in standard form.
\frac{\frac{1}{\sqrt{2}\left(\sqrt{3}+1\right)}x\sqrt{2}\left(\sqrt{3}+1\right)}{1}=\frac{10\sqrt{6}\sqrt{2}\left(\sqrt{3}+1\right)}{1}
Divide both sides by \left(\sqrt{2}\right)^{-1}\left(\sqrt{3}+1\right)^{-1}.
x=\frac{10\sqrt{6}\sqrt{2}\left(\sqrt{3}+1\right)}{1}
Dividing by \left(\sqrt{2}\right)^{-1}\left(\sqrt{3}+1\right)^{-1} undoes the multiplication by \left(\sqrt{2}\right)^{-1}\left(\sqrt{3}+1\right)^{-1}.
x=20\sqrt{3}+60
Divide 10\sqrt{6} by \left(\sqrt{2}\right)^{-1}\left(\sqrt{3}+1\right)^{-1}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}