Skip to main content
Solve for x
Tick mark Image
Graph

Share

2\times 5\sqrt{2}\sqrt{3}=\frac{x}{\sqrt{2}\left(\sqrt{3}+1\right)}
Multiply both sides of the equation by 4, the least common multiple of 2,4.
10\sqrt{2}\sqrt{3}=\frac{x}{\sqrt{2}\left(\sqrt{3}+1\right)}
Multiply 2 and 5 to get 10.
10\sqrt{6}=\frac{x}{\sqrt{2}\left(\sqrt{3}+1\right)}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{x}{\sqrt{2}\left(\sqrt{3}+1\right)}=10\sqrt{6}
Swap sides so that all variable terms are on the left hand side.
\frac{1}{\sqrt{2}\left(\sqrt{3}+1\right)}x=10\sqrt{6}
The equation is in standard form.
\frac{\frac{1}{\sqrt{2}\left(\sqrt{3}+1\right)}x\sqrt{2}\left(\sqrt{3}+1\right)}{1}=\frac{10\sqrt{6}\sqrt{2}\left(\sqrt{3}+1\right)}{1}
Divide both sides by \left(\sqrt{2}\right)^{-1}\left(\sqrt{3}+1\right)^{-1}.
x=\frac{10\sqrt{6}\sqrt{2}\left(\sqrt{3}+1\right)}{1}
Dividing by \left(\sqrt{2}\right)^{-1}\left(\sqrt{3}+1\right)^{-1} undoes the multiplication by \left(\sqrt{2}\right)^{-1}\left(\sqrt{3}+1\right)^{-1}.
x=20\sqrt{3}+60
Divide 10\sqrt{6} by \left(\sqrt{2}\right)^{-1}\left(\sqrt{3}+1\right)^{-1}.