Skip to main content
Evaluate
Tick mark Image

Share

\frac{5\times \left(\frac{1}{2}\right)^{2}+4\left(\cos(30)\right)^{2}-\left(\tan(45)\right)^{2}}{\left(\cos(60)\right)^{2}+\left(\sin(30)\right)^{2}}
Get the value of \cos(60) from trigonometric values table.
\frac{5\times \frac{1}{4}+4\left(\cos(30)\right)^{2}-\left(\tan(45)\right)^{2}}{\left(\cos(60)\right)^{2}+\left(\sin(30)\right)^{2}}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{\frac{5}{4}+4\left(\cos(30)\right)^{2}-\left(\tan(45)\right)^{2}}{\left(\cos(60)\right)^{2}+\left(\sin(30)\right)^{2}}
Multiply 5 and \frac{1}{4} to get \frac{5}{4}.
\frac{\frac{5}{4}+4\times \left(\frac{\sqrt{3}}{2}\right)^{2}-\left(\tan(45)\right)^{2}}{\left(\cos(60)\right)^{2}+\left(\sin(30)\right)^{2}}
Get the value of \cos(30) from trigonometric values table.
\frac{\frac{5}{4}+4\times \frac{\left(\sqrt{3}\right)^{2}}{2^{2}}-\left(\tan(45)\right)^{2}}{\left(\cos(60)\right)^{2}+\left(\sin(30)\right)^{2}}
To raise \frac{\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{5}{4}+\frac{4\left(\sqrt{3}\right)^{2}}{2^{2}}-\left(\tan(45)\right)^{2}}{\left(\cos(60)\right)^{2}+\left(\sin(30)\right)^{2}}
Express 4\times \frac{\left(\sqrt{3}\right)^{2}}{2^{2}} as a single fraction.
\frac{\frac{5}{4}+\frac{4\left(\sqrt{3}\right)^{2}}{4}-\left(\tan(45)\right)^{2}}{\left(\cos(60)\right)^{2}+\left(\sin(30)\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Expand 2^{2}.
\frac{\frac{5+4\left(\sqrt{3}\right)^{2}}{4}-\left(\tan(45)\right)^{2}}{\left(\cos(60)\right)^{2}+\left(\sin(30)\right)^{2}}
Since \frac{5}{4} and \frac{4\left(\sqrt{3}\right)^{2}}{4} have the same denominator, add them by adding their numerators.
\frac{\frac{5+4\left(\sqrt{3}\right)^{2}}{4}-1^{2}}{\left(\cos(60)\right)^{2}+\left(\sin(30)\right)^{2}}
Get the value of \tan(45) from trigonometric values table.
\frac{\frac{5+4\left(\sqrt{3}\right)^{2}}{4}-1}{\left(\cos(60)\right)^{2}+\left(\sin(30)\right)^{2}}
Calculate 1 to the power of 2 and get 1.
\frac{\frac{5+4\left(\sqrt{3}\right)^{2}}{4}-\frac{4}{4}}{\left(\cos(60)\right)^{2}+\left(\sin(30)\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{4}{4}.
\frac{\frac{5+4\left(\sqrt{3}\right)^{2}-4}{4}}{\left(\cos(60)\right)^{2}+\left(\sin(30)\right)^{2}}
Since \frac{5+4\left(\sqrt{3}\right)^{2}}{4} and \frac{4}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{5+4\left(\sqrt{3}\right)^{2}-4}{4}}{\left(\frac{1}{2}\right)^{2}+\left(\sin(30)\right)^{2}}
Get the value of \cos(60) from trigonometric values table.
\frac{\frac{5+4\left(\sqrt{3}\right)^{2}-4}{4}}{\frac{1}{4}+\left(\sin(30)\right)^{2}}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{\frac{5+4\left(\sqrt{3}\right)^{2}-4}{4}}{\frac{1}{4}+\left(\frac{1}{2}\right)^{2}}
Get the value of \sin(30) from trigonometric values table.
\frac{\frac{5+4\left(\sqrt{3}\right)^{2}-4}{4}}{\frac{1}{4}+\frac{1}{4}}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{\frac{5+4\left(\sqrt{3}\right)^{2}-4}{4}}{\frac{1}{2}}
Add \frac{1}{4} and \frac{1}{4} to get \frac{1}{2}.
\frac{\left(5+4\left(\sqrt{3}\right)^{2}-4\right)\times 2}{4}
Divide \frac{5+4\left(\sqrt{3}\right)^{2}-4}{4} by \frac{1}{2} by multiplying \frac{5+4\left(\sqrt{3}\right)^{2}-4}{4} by the reciprocal of \frac{1}{2}.
\frac{\left(5+4\times 3-4\right)\times 2}{4}
The square of \sqrt{3} is 3.
\frac{\left(5+12-4\right)\times 2}{4}
Multiply 4 and 3 to get 12.
\frac{\left(17-4\right)\times 2}{4}
Add 5 and 12 to get 17.
\frac{13\times 2}{4}
Subtract 4 from 17 to get 13.
\frac{26}{4}
Multiply 13 and 2 to get 26.
\frac{13}{2}
Reduce the fraction \frac{26}{4} to lowest terms by extracting and canceling out 2.