Solve for x
x=\frac{-3\sqrt{89}-39}{40}\approx -1.682548585
x=\frac{3\sqrt{89}-39}{40}\approx -0.267451415
Graph
Share
Copied to clipboard
\left(x+1\right)\times 5+50=100\left(x+1\right)^{2}
Variable x cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by \left(x+1\right)^{2}, the least common multiple of 1+x,\left(1+x\right)^{2}.
5x+5+50=100\left(x+1\right)^{2}
Use the distributive property to multiply x+1 by 5.
5x+55=100\left(x+1\right)^{2}
Add 5 and 50 to get 55.
5x+55=100\left(x^{2}+2x+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
5x+55=100x^{2}+200x+100
Use the distributive property to multiply 100 by x^{2}+2x+1.
5x+55-100x^{2}=200x+100
Subtract 100x^{2} from both sides.
5x+55-100x^{2}-200x=100
Subtract 200x from both sides.
-195x+55-100x^{2}=100
Combine 5x and -200x to get -195x.
-195x+55-100x^{2}-100=0
Subtract 100 from both sides.
-195x-45-100x^{2}=0
Subtract 100 from 55 to get -45.
-100x^{2}-195x-45=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-195\right)±\sqrt{\left(-195\right)^{2}-4\left(-100\right)\left(-45\right)}}{2\left(-100\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -100 for a, -195 for b, and -45 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-195\right)±\sqrt{38025-4\left(-100\right)\left(-45\right)}}{2\left(-100\right)}
Square -195.
x=\frac{-\left(-195\right)±\sqrt{38025+400\left(-45\right)}}{2\left(-100\right)}
Multiply -4 times -100.
x=\frac{-\left(-195\right)±\sqrt{38025-18000}}{2\left(-100\right)}
Multiply 400 times -45.
x=\frac{-\left(-195\right)±\sqrt{20025}}{2\left(-100\right)}
Add 38025 to -18000.
x=\frac{-\left(-195\right)±15\sqrt{89}}{2\left(-100\right)}
Take the square root of 20025.
x=\frac{195±15\sqrt{89}}{2\left(-100\right)}
The opposite of -195 is 195.
x=\frac{195±15\sqrt{89}}{-200}
Multiply 2 times -100.
x=\frac{15\sqrt{89}+195}{-200}
Now solve the equation x=\frac{195±15\sqrt{89}}{-200} when ± is plus. Add 195 to 15\sqrt{89}.
x=\frac{-3\sqrt{89}-39}{40}
Divide 195+15\sqrt{89} by -200.
x=\frac{195-15\sqrt{89}}{-200}
Now solve the equation x=\frac{195±15\sqrt{89}}{-200} when ± is minus. Subtract 15\sqrt{89} from 195.
x=\frac{3\sqrt{89}-39}{40}
Divide 195-15\sqrt{89} by -200.
x=\frac{-3\sqrt{89}-39}{40} x=\frac{3\sqrt{89}-39}{40}
The equation is now solved.
\left(x+1\right)\times 5+50=100\left(x+1\right)^{2}
Variable x cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by \left(x+1\right)^{2}, the least common multiple of 1+x,\left(1+x\right)^{2}.
5x+5+50=100\left(x+1\right)^{2}
Use the distributive property to multiply x+1 by 5.
5x+55=100\left(x+1\right)^{2}
Add 5 and 50 to get 55.
5x+55=100\left(x^{2}+2x+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
5x+55=100x^{2}+200x+100
Use the distributive property to multiply 100 by x^{2}+2x+1.
5x+55-100x^{2}=200x+100
Subtract 100x^{2} from both sides.
5x+55-100x^{2}-200x=100
Subtract 200x from both sides.
-195x+55-100x^{2}=100
Combine 5x and -200x to get -195x.
-195x-100x^{2}=100-55
Subtract 55 from both sides.
-195x-100x^{2}=45
Subtract 55 from 100 to get 45.
-100x^{2}-195x=45
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-100x^{2}-195x}{-100}=\frac{45}{-100}
Divide both sides by -100.
x^{2}+\left(-\frac{195}{-100}\right)x=\frac{45}{-100}
Dividing by -100 undoes the multiplication by -100.
x^{2}+\frac{39}{20}x=\frac{45}{-100}
Reduce the fraction \frac{-195}{-100} to lowest terms by extracting and canceling out 5.
x^{2}+\frac{39}{20}x=-\frac{9}{20}
Reduce the fraction \frac{45}{-100} to lowest terms by extracting and canceling out 5.
x^{2}+\frac{39}{20}x+\left(\frac{39}{40}\right)^{2}=-\frac{9}{20}+\left(\frac{39}{40}\right)^{2}
Divide \frac{39}{20}, the coefficient of the x term, by 2 to get \frac{39}{40}. Then add the square of \frac{39}{40} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{39}{20}x+\frac{1521}{1600}=-\frac{9}{20}+\frac{1521}{1600}
Square \frac{39}{40} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{39}{20}x+\frac{1521}{1600}=\frac{801}{1600}
Add -\frac{9}{20} to \frac{1521}{1600} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{39}{40}\right)^{2}=\frac{801}{1600}
Factor x^{2}+\frac{39}{20}x+\frac{1521}{1600}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{39}{40}\right)^{2}}=\sqrt{\frac{801}{1600}}
Take the square root of both sides of the equation.
x+\frac{39}{40}=\frac{3\sqrt{89}}{40} x+\frac{39}{40}=-\frac{3\sqrt{89}}{40}
Simplify.
x=\frac{3\sqrt{89}-39}{40} x=\frac{-3\sqrt{89}-39}{40}
Subtract \frac{39}{40} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}