Evaluate
\frac{137x^{2}+195x+180}{36x\left(x+3\right)^{2}}
Expand
\frac{137x^{2}+195x+180}{36x\left(x+3\right)^{2}}
Graph
Share
Copied to clipboard
\frac{5}{9x}+\frac{\frac{13}{4}}{x+3}+\frac{-\frac{23}{3}}{\left(x+3\right)^{2}}
Express \frac{\frac{5}{9}}{x} as a single fraction.
\frac{5}{9x}+\frac{13}{4\left(x+3\right)}+\frac{-\frac{23}{3}}{\left(x+3\right)^{2}}
Express \frac{\frac{13}{4}}{x+3} as a single fraction.
\frac{5\times 4\left(x+3\right)}{36x\left(x+3\right)}+\frac{13\times 9x}{36x\left(x+3\right)}+\frac{-\frac{23}{3}}{\left(x+3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 9x and 4\left(x+3\right) is 36x\left(x+3\right). Multiply \frac{5}{9x} times \frac{4\left(x+3\right)}{4\left(x+3\right)}. Multiply \frac{13}{4\left(x+3\right)} times \frac{9x}{9x}.
\frac{5\times 4\left(x+3\right)+13\times 9x}{36x\left(x+3\right)}+\frac{-\frac{23}{3}}{\left(x+3\right)^{2}}
Since \frac{5\times 4\left(x+3\right)}{36x\left(x+3\right)} and \frac{13\times 9x}{36x\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{20x+60+117x}{36x\left(x+3\right)}+\frac{-\frac{23}{3}}{\left(x+3\right)^{2}}
Do the multiplications in 5\times 4\left(x+3\right)+13\times 9x.
\frac{137x+60}{36x\left(x+3\right)}+\frac{-\frac{23}{3}}{\left(x+3\right)^{2}}
Combine like terms in 20x+60+117x.
\frac{137x+60}{36x^{2}+108x}+\frac{-\frac{23}{3}}{\left(x+3\right)^{2}}
Use the distributive property to multiply 36x by x+3.
\frac{137x+60}{36x^{2}+108x}+\frac{-23}{3\left(x+3\right)^{2}}
Express \frac{-\frac{23}{3}}{\left(x+3\right)^{2}} as a single fraction.
\frac{137x+60}{36x\left(x+3\right)}+\frac{-23}{3\left(x+3\right)^{2}}
Factor 36x^{2}+108x.
\frac{\left(137x+60\right)\left(x+3\right)}{36x\left(x+3\right)^{2}}+\frac{-23\times 12x}{36x\left(x+3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 36x\left(x+3\right) and 3\left(x+3\right)^{2} is 36x\left(x+3\right)^{2}. Multiply \frac{137x+60}{36x\left(x+3\right)} times \frac{x+3}{x+3}. Multiply \frac{-23}{3\left(x+3\right)^{2}} times \frac{12x}{12x}.
\frac{\left(137x+60\right)\left(x+3\right)-23\times 12x}{36x\left(x+3\right)^{2}}
Since \frac{\left(137x+60\right)\left(x+3\right)}{36x\left(x+3\right)^{2}} and \frac{-23\times 12x}{36x\left(x+3\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{137x^{2}+411x+60x+180-276x}{36x\left(x+3\right)^{2}}
Do the multiplications in \left(137x+60\right)\left(x+3\right)-23\times 12x.
\frac{137x^{2}+195x+180}{36x\left(x+3\right)^{2}}
Combine like terms in 137x^{2}+411x+60x+180-276x.
\frac{137x^{2}+195x+180}{36x^{3}+216x^{2}+324x}
Expand 36x\left(x+3\right)^{2}.
\frac{5}{9x}+\frac{\frac{13}{4}}{x+3}+\frac{-\frac{23}{3}}{\left(x+3\right)^{2}}
Express \frac{\frac{5}{9}}{x} as a single fraction.
\frac{5}{9x}+\frac{13}{4\left(x+3\right)}+\frac{-\frac{23}{3}}{\left(x+3\right)^{2}}
Express \frac{\frac{13}{4}}{x+3} as a single fraction.
\frac{5\times 4\left(x+3\right)}{36x\left(x+3\right)}+\frac{13\times 9x}{36x\left(x+3\right)}+\frac{-\frac{23}{3}}{\left(x+3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 9x and 4\left(x+3\right) is 36x\left(x+3\right). Multiply \frac{5}{9x} times \frac{4\left(x+3\right)}{4\left(x+3\right)}. Multiply \frac{13}{4\left(x+3\right)} times \frac{9x}{9x}.
\frac{5\times 4\left(x+3\right)+13\times 9x}{36x\left(x+3\right)}+\frac{-\frac{23}{3}}{\left(x+3\right)^{2}}
Since \frac{5\times 4\left(x+3\right)}{36x\left(x+3\right)} and \frac{13\times 9x}{36x\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{20x+60+117x}{36x\left(x+3\right)}+\frac{-\frac{23}{3}}{\left(x+3\right)^{2}}
Do the multiplications in 5\times 4\left(x+3\right)+13\times 9x.
\frac{137x+60}{36x\left(x+3\right)}+\frac{-\frac{23}{3}}{\left(x+3\right)^{2}}
Combine like terms in 20x+60+117x.
\frac{137x+60}{36x^{2}+108x}+\frac{-\frac{23}{3}}{\left(x+3\right)^{2}}
Use the distributive property to multiply 36x by x+3.
\frac{137x+60}{36x^{2}+108x}+\frac{-23}{3\left(x+3\right)^{2}}
Express \frac{-\frac{23}{3}}{\left(x+3\right)^{2}} as a single fraction.
\frac{137x+60}{36x\left(x+3\right)}+\frac{-23}{3\left(x+3\right)^{2}}
Factor 36x^{2}+108x.
\frac{\left(137x+60\right)\left(x+3\right)}{36x\left(x+3\right)^{2}}+\frac{-23\times 12x}{36x\left(x+3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 36x\left(x+3\right) and 3\left(x+3\right)^{2} is 36x\left(x+3\right)^{2}. Multiply \frac{137x+60}{36x\left(x+3\right)} times \frac{x+3}{x+3}. Multiply \frac{-23}{3\left(x+3\right)^{2}} times \frac{12x}{12x}.
\frac{\left(137x+60\right)\left(x+3\right)-23\times 12x}{36x\left(x+3\right)^{2}}
Since \frac{\left(137x+60\right)\left(x+3\right)}{36x\left(x+3\right)^{2}} and \frac{-23\times 12x}{36x\left(x+3\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{137x^{2}+411x+60x+180-276x}{36x\left(x+3\right)^{2}}
Do the multiplications in \left(137x+60\right)\left(x+3\right)-23\times 12x.
\frac{137x^{2}+195x+180}{36x\left(x+3\right)^{2}}
Combine like terms in 137x^{2}+411x+60x+180-276x.
\frac{137x^{2}+195x+180}{36x^{3}+216x^{2}+324x}
Expand 36x\left(x+3\right)^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}