Solve for x
x\in (-\infty,-35)\cup [19,\infty)
Graph
Share
Copied to clipboard
\frac{5+x}{x+35}\geq \frac{4}{9}
Add 13 and 22 to get 35.
x+35>0 x+35<0
Denominator x+35 cannot be zero since division by zero is not defined. There are two cases.
x>-35
Consider the case when x+35 is positive. Move 35 to the right hand side.
5+x\geq \frac{4}{9}\left(x+35\right)
The initial inequality does not change the direction when multiplied by x+35 for x+35>0.
5+x\geq \frac{4}{9}x+\frac{140}{9}
Multiply out the right hand side.
x-\frac{4}{9}x\geq -5+\frac{140}{9}
Move the terms containing x to the left hand side and all other terms to the right hand side.
\frac{5}{9}x\geq \frac{95}{9}
Combine like terms.
x\geq 19
Divide both sides by \frac{5}{9}. Since \frac{5}{9} is positive, the inequality direction remains the same.
x<-35
Now consider the case when x+35 is negative. Move 35 to the right hand side.
5+x\leq \frac{4}{9}\left(x+35\right)
The initial inequality changes the direction when multiplied by x+35 for x+35<0.
5+x\leq \frac{4}{9}x+\frac{140}{9}
Multiply out the right hand side.
x-\frac{4}{9}x\leq -5+\frac{140}{9}
Move the terms containing x to the left hand side and all other terms to the right hand side.
\frac{5}{9}x\leq \frac{95}{9}
Combine like terms.
x\leq 19
Divide both sides by \frac{5}{9}. Since \frac{5}{9} is positive, the inequality direction remains the same.
x<-35
Consider condition x<-35 specified above.
x\in (-\infty,-35)\cup [19,\infty)
The final solution is the union of the obtained solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}