Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(5+4i\right)\left(2-3i\right)}{\left(2+3i\right)\left(2-3i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 2-3i.
\frac{\left(5+4i\right)\left(2-3i\right)}{2^{2}-3^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5+4i\right)\left(2-3i\right)}{13}
By definition, i^{2} is -1. Calculate the denominator.
\frac{5\times 2+5\times \left(-3i\right)+4i\times 2+4\left(-3\right)i^{2}}{13}
Multiply complex numbers 5+4i and 2-3i like you multiply binomials.
\frac{5\times 2+5\times \left(-3i\right)+4i\times 2+4\left(-3\right)\left(-1\right)}{13}
By definition, i^{2} is -1.
\frac{10-15i+8i+12}{13}
Do the multiplications in 5\times 2+5\times \left(-3i\right)+4i\times 2+4\left(-3\right)\left(-1\right).
\frac{10+12+\left(-15+8\right)i}{13}
Combine the real and imaginary parts in 10-15i+8i+12.
\frac{22-7i}{13}
Do the additions in 10+12+\left(-15+8\right)i.
\frac{22}{13}-\frac{7}{13}i
Divide 22-7i by 13 to get \frac{22}{13}-\frac{7}{13}i.
Re(\frac{\left(5+4i\right)\left(2-3i\right)}{\left(2+3i\right)\left(2-3i\right)})
Multiply both numerator and denominator of \frac{5+4i}{2+3i} by the complex conjugate of the denominator, 2-3i.
Re(\frac{\left(5+4i\right)\left(2-3i\right)}{2^{2}-3^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(5+4i\right)\left(2-3i\right)}{13})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{5\times 2+5\times \left(-3i\right)+4i\times 2+4\left(-3\right)i^{2}}{13})
Multiply complex numbers 5+4i and 2-3i like you multiply binomials.
Re(\frac{5\times 2+5\times \left(-3i\right)+4i\times 2+4\left(-3\right)\left(-1\right)}{13})
By definition, i^{2} is -1.
Re(\frac{10-15i+8i+12}{13})
Do the multiplications in 5\times 2+5\times \left(-3i\right)+4i\times 2+4\left(-3\right)\left(-1\right).
Re(\frac{10+12+\left(-15+8\right)i}{13})
Combine the real and imaginary parts in 10-15i+8i+12.
Re(\frac{22-7i}{13})
Do the additions in 10+12+\left(-15+8\right)i.
Re(\frac{22}{13}-\frac{7}{13}i)
Divide 22-7i by 13 to get \frac{22}{13}-\frac{7}{13}i.
\frac{22}{13}
The real part of \frac{22}{13}-\frac{7}{13}i is \frac{22}{13}.