Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(5+i\right)\left(-6+2i\right)}{\left(-6-2i\right)\left(-6+2i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -6+2i.
\frac{\left(5+i\right)\left(-6+2i\right)}{\left(-6\right)^{2}-2^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5+i\right)\left(-6+2i\right)}{40}
By definition, i^{2} is -1. Calculate the denominator.
\frac{5\left(-6\right)+5\times \left(2i\right)-6i+2i^{2}}{40}
Multiply complex numbers 5+i and -6+2i like you multiply binomials.
\frac{5\left(-6\right)+5\times \left(2i\right)-6i+2\left(-1\right)}{40}
By definition, i^{2} is -1.
\frac{-30+10i-6i-2}{40}
Do the multiplications in 5\left(-6\right)+5\times \left(2i\right)-6i+2\left(-1\right).
\frac{-30-2+\left(10-6\right)i}{40}
Combine the real and imaginary parts in -30+10i-6i-2.
\frac{-32+4i}{40}
Do the additions in -30-2+\left(10-6\right)i.
-\frac{4}{5}+\frac{1}{10}i
Divide -32+4i by 40 to get -\frac{4}{5}+\frac{1}{10}i.
Re(\frac{\left(5+i\right)\left(-6+2i\right)}{\left(-6-2i\right)\left(-6+2i\right)})
Multiply both numerator and denominator of \frac{5+i}{-6-2i} by the complex conjugate of the denominator, -6+2i.
Re(\frac{\left(5+i\right)\left(-6+2i\right)}{\left(-6\right)^{2}-2^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(5+i\right)\left(-6+2i\right)}{40})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{5\left(-6\right)+5\times \left(2i\right)-6i+2i^{2}}{40})
Multiply complex numbers 5+i and -6+2i like you multiply binomials.
Re(\frac{5\left(-6\right)+5\times \left(2i\right)-6i+2\left(-1\right)}{40})
By definition, i^{2} is -1.
Re(\frac{-30+10i-6i-2}{40})
Do the multiplications in 5\left(-6\right)+5\times \left(2i\right)-6i+2\left(-1\right).
Re(\frac{-30-2+\left(10-6\right)i}{40})
Combine the real and imaginary parts in -30+10i-6i-2.
Re(\frac{-32+4i}{40})
Do the additions in -30-2+\left(10-6\right)i.
Re(-\frac{4}{5}+\frac{1}{10}i)
Divide -32+4i by 40 to get -\frac{4}{5}+\frac{1}{10}i.
-\frac{4}{5}
The real part of -\frac{4}{5}+\frac{1}{10}i is -\frac{4}{5}.