Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(5+3i\right)\left(4+i\right)}{\left(4-i\right)\left(4+i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 4+i.
\frac{\left(5+3i\right)\left(4+i\right)}{4^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5+3i\right)\left(4+i\right)}{17}
By definition, i^{2} is -1. Calculate the denominator.
\frac{5\times 4+5i+3i\times 4+3i^{2}}{17}
Multiply complex numbers 5+3i and 4+i like you multiply binomials.
\frac{5\times 4+5i+3i\times 4+3\left(-1\right)}{17}
By definition, i^{2} is -1.
\frac{20+5i+12i-3}{17}
Do the multiplications in 5\times 4+5i+3i\times 4+3\left(-1\right).
\frac{20-3+\left(5+12\right)i}{17}
Combine the real and imaginary parts in 20+5i+12i-3.
\frac{17+17i}{17}
Do the additions in 20-3+\left(5+12\right)i.
1+i
Divide 17+17i by 17 to get 1+i.
Re(\frac{\left(5+3i\right)\left(4+i\right)}{\left(4-i\right)\left(4+i\right)})
Multiply both numerator and denominator of \frac{5+3i}{4-i} by the complex conjugate of the denominator, 4+i.
Re(\frac{\left(5+3i\right)\left(4+i\right)}{4^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(5+3i\right)\left(4+i\right)}{17})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{5\times 4+5i+3i\times 4+3i^{2}}{17})
Multiply complex numbers 5+3i and 4+i like you multiply binomials.
Re(\frac{5\times 4+5i+3i\times 4+3\left(-1\right)}{17})
By definition, i^{2} is -1.
Re(\frac{20+5i+12i-3}{17})
Do the multiplications in 5\times 4+5i+3i\times 4+3\left(-1\right).
Re(\frac{20-3+\left(5+12\right)i}{17})
Combine the real and imaginary parts in 20+5i+12i-3.
Re(\frac{17+17i}{17})
Do the additions in 20-3+\left(5+12\right)i.
Re(1+i)
Divide 17+17i by 17 to get 1+i.
1
The real part of 1+i is 1.