Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(5+3i\right)\left(4+2i\right)}{\left(4-2i\right)\left(4+2i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 4+2i.
\frac{\left(5+3i\right)\left(4+2i\right)}{4^{2}-2^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5+3i\right)\left(4+2i\right)}{20}
By definition, i^{2} is -1. Calculate the denominator.
\frac{5\times 4+5\times \left(2i\right)+3i\times 4+3\times 2i^{2}}{20}
Multiply complex numbers 5+3i and 4+2i like you multiply binomials.
\frac{5\times 4+5\times \left(2i\right)+3i\times 4+3\times 2\left(-1\right)}{20}
By definition, i^{2} is -1.
\frac{20+10i+12i-6}{20}
Do the multiplications in 5\times 4+5\times \left(2i\right)+3i\times 4+3\times 2\left(-1\right).
\frac{20-6+\left(10+12\right)i}{20}
Combine the real and imaginary parts in 20+10i+12i-6.
\frac{14+22i}{20}
Do the additions in 20-6+\left(10+12\right)i.
\frac{7}{10}+\frac{11}{10}i
Divide 14+22i by 20 to get \frac{7}{10}+\frac{11}{10}i.
Re(\frac{\left(5+3i\right)\left(4+2i\right)}{\left(4-2i\right)\left(4+2i\right)})
Multiply both numerator and denominator of \frac{5+3i}{4-2i} by the complex conjugate of the denominator, 4+2i.
Re(\frac{\left(5+3i\right)\left(4+2i\right)}{4^{2}-2^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(5+3i\right)\left(4+2i\right)}{20})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{5\times 4+5\times \left(2i\right)+3i\times 4+3\times 2i^{2}}{20})
Multiply complex numbers 5+3i and 4+2i like you multiply binomials.
Re(\frac{5\times 4+5\times \left(2i\right)+3i\times 4+3\times 2\left(-1\right)}{20})
By definition, i^{2} is -1.
Re(\frac{20+10i+12i-6}{20})
Do the multiplications in 5\times 4+5\times \left(2i\right)+3i\times 4+3\times 2\left(-1\right).
Re(\frac{20-6+\left(10+12\right)i}{20})
Combine the real and imaginary parts in 20+10i+12i-6.
Re(\frac{14+22i}{20})
Do the additions in 20-6+\left(10+12\right)i.
Re(\frac{7}{10}+\frac{11}{10}i)
Divide 14+22i by 20 to get \frac{7}{10}+\frac{11}{10}i.
\frac{7}{10}
The real part of \frac{7}{10}+\frac{11}{10}i is \frac{7}{10}.