Evaluate
-\frac{1}{10}+\frac{13}{10}i=-0.1+1.3i
Real Part
-\frac{1}{10} = -0.1
Share
Copied to clipboard
\frac{\left(5+3i\right)\left(2+4i\right)}{\left(2-4i\right)\left(2+4i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 2+4i.
\frac{\left(5+3i\right)\left(2+4i\right)}{2^{2}-4^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5+3i\right)\left(2+4i\right)}{20}
By definition, i^{2} is -1. Calculate the denominator.
\frac{5\times 2+5\times \left(4i\right)+3i\times 2+3\times 4i^{2}}{20}
Multiply complex numbers 5+3i and 2+4i like you multiply binomials.
\frac{5\times 2+5\times \left(4i\right)+3i\times 2+3\times 4\left(-1\right)}{20}
By definition, i^{2} is -1.
\frac{10+20i+6i-12}{20}
Do the multiplications in 5\times 2+5\times \left(4i\right)+3i\times 2+3\times 4\left(-1\right).
\frac{10-12+\left(20+6\right)i}{20}
Combine the real and imaginary parts in 10+20i+6i-12.
\frac{-2+26i}{20}
Do the additions in 10-12+\left(20+6\right)i.
-\frac{1}{10}+\frac{13}{10}i
Divide -2+26i by 20 to get -\frac{1}{10}+\frac{13}{10}i.
Re(\frac{\left(5+3i\right)\left(2+4i\right)}{\left(2-4i\right)\left(2+4i\right)})
Multiply both numerator and denominator of \frac{5+3i}{2-4i} by the complex conjugate of the denominator, 2+4i.
Re(\frac{\left(5+3i\right)\left(2+4i\right)}{2^{2}-4^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(5+3i\right)\left(2+4i\right)}{20})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{5\times 2+5\times \left(4i\right)+3i\times 2+3\times 4i^{2}}{20})
Multiply complex numbers 5+3i and 2+4i like you multiply binomials.
Re(\frac{5\times 2+5\times \left(4i\right)+3i\times 2+3\times 4\left(-1\right)}{20})
By definition, i^{2} is -1.
Re(\frac{10+20i+6i-12}{20})
Do the multiplications in 5\times 2+5\times \left(4i\right)+3i\times 2+3\times 4\left(-1\right).
Re(\frac{10-12+\left(20+6\right)i}{20})
Combine the real and imaginary parts in 10+20i+6i-12.
Re(\frac{-2+26i}{20})
Do the additions in 10-12+\left(20+6\right)i.
Re(-\frac{1}{10}+\frac{13}{10}i)
Divide -2+26i by 20 to get -\frac{1}{10}+\frac{13}{10}i.
-\frac{1}{10}
The real part of -\frac{1}{10}+\frac{13}{10}i is -\frac{1}{10}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}