Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(5+3i\right)\left(2+4i\right)}{\left(2-4i\right)\left(2+4i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 2+4i.
\frac{\left(5+3i\right)\left(2+4i\right)}{2^{2}-4^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5+3i\right)\left(2+4i\right)}{20}
By definition, i^{2} is -1. Calculate the denominator.
\frac{5\times 2+5\times \left(4i\right)+3i\times 2+3\times 4i^{2}}{20}
Multiply complex numbers 5+3i and 2+4i like you multiply binomials.
\frac{5\times 2+5\times \left(4i\right)+3i\times 2+3\times 4\left(-1\right)}{20}
By definition, i^{2} is -1.
\frac{10+20i+6i-12}{20}
Do the multiplications in 5\times 2+5\times \left(4i\right)+3i\times 2+3\times 4\left(-1\right).
\frac{10-12+\left(20+6\right)i}{20}
Combine the real and imaginary parts in 10+20i+6i-12.
\frac{-2+26i}{20}
Do the additions in 10-12+\left(20+6\right)i.
-\frac{1}{10}+\frac{13}{10}i
Divide -2+26i by 20 to get -\frac{1}{10}+\frac{13}{10}i.
Re(\frac{\left(5+3i\right)\left(2+4i\right)}{\left(2-4i\right)\left(2+4i\right)})
Multiply both numerator and denominator of \frac{5+3i}{2-4i} by the complex conjugate of the denominator, 2+4i.
Re(\frac{\left(5+3i\right)\left(2+4i\right)}{2^{2}-4^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(5+3i\right)\left(2+4i\right)}{20})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{5\times 2+5\times \left(4i\right)+3i\times 2+3\times 4i^{2}}{20})
Multiply complex numbers 5+3i and 2+4i like you multiply binomials.
Re(\frac{5\times 2+5\times \left(4i\right)+3i\times 2+3\times 4\left(-1\right)}{20})
By definition, i^{2} is -1.
Re(\frac{10+20i+6i-12}{20})
Do the multiplications in 5\times 2+5\times \left(4i\right)+3i\times 2+3\times 4\left(-1\right).
Re(\frac{10-12+\left(20+6\right)i}{20})
Combine the real and imaginary parts in 10+20i+6i-12.
Re(\frac{-2+26i}{20})
Do the additions in 10-12+\left(20+6\right)i.
Re(-\frac{1}{10}+\frac{13}{10}i)
Divide -2+26i by 20 to get -\frac{1}{10}+\frac{13}{10}i.
-\frac{1}{10}
The real part of -\frac{1}{10}+\frac{13}{10}i is -\frac{1}{10}.