Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(5+2i\sqrt{3}\right)\left(3-i\sqrt{3}\right)}{\left(3+i\sqrt{3}\right)\left(3-i\sqrt{3}\right)}
Rationalize the denominator of \frac{5+2i\sqrt{3}}{3+i\sqrt{3}} by multiplying numerator and denominator by 3-i\sqrt{3}.
\frac{\left(5+2i\sqrt{3}\right)\left(3-i\sqrt{3}\right)}{3^{2}-\left(i\sqrt{3}\right)^{2}}
Consider \left(3+i\sqrt{3}\right)\left(3-i\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5+2i\sqrt{3}\right)\left(3-i\sqrt{3}\right)}{9-\left(i\sqrt{3}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{\left(5+2i\sqrt{3}\right)\left(3-i\sqrt{3}\right)}{9-i^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(i\sqrt{3}\right)^{2}.
\frac{\left(5+2i\sqrt{3}\right)\left(3-i\sqrt{3}\right)}{9-\left(-\left(\sqrt{3}\right)^{2}\right)}
Calculate i to the power of 2 and get -1.
\frac{\left(5+2i\sqrt{3}\right)\left(3-i\sqrt{3}\right)}{9-\left(-3\right)}
The square of \sqrt{3} is 3.
\frac{\left(5+2i\sqrt{3}\right)\left(3-i\sqrt{3}\right)}{9+3}
Multiply -1 and -3 to get 3.
\frac{\left(5+2i\sqrt{3}\right)\left(3-i\sqrt{3}\right)}{12}
Add 9 and 3 to get 12.
\frac{15-5i\sqrt{3}+6i\sqrt{3}+2\left(\sqrt{3}\right)^{2}}{12}
Apply the distributive property by multiplying each term of 5+2i\sqrt{3} by each term of 3-i\sqrt{3}.
\frac{15+i\sqrt{3}+2\left(\sqrt{3}\right)^{2}}{12}
Combine -5i\sqrt{3} and 6i\sqrt{3} to get i\sqrt{3}.
\frac{15+i\sqrt{3}+2\times 3}{12}
The square of \sqrt{3} is 3.
\frac{15+i\sqrt{3}+6}{12}
Multiply 2 and 3 to get 6.
\frac{21+i\sqrt{3}}{12}
Add 15 and 6 to get 21.