Evaluate
-\frac{14}{15}-\frac{7}{15}i\approx -0.933333333-0.466666667i
Real Part
-\frac{14}{15} = -0.9333333333333333
Share
Copied to clipboard
\frac{7}{-6+3i}
Add 5 and 2 to get 7.
\frac{7\left(-6-3i\right)}{\left(-6+3i\right)\left(-6-3i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -6-3i.
\frac{7\left(-6-3i\right)}{\left(-6\right)^{2}-3^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{7\left(-6-3i\right)}{45}
By definition, i^{2} is -1. Calculate the denominator.
\frac{7\left(-6\right)+7\times \left(-3i\right)}{45}
Multiply 7 times -6-3i.
\frac{-42-21i}{45}
Do the multiplications in 7\left(-6\right)+7\times \left(-3i\right).
-\frac{14}{15}-\frac{7}{15}i
Divide -42-21i by 45 to get -\frac{14}{15}-\frac{7}{15}i.
Re(\frac{7}{-6+3i})
Add 5 and 2 to get 7.
Re(\frac{7\left(-6-3i\right)}{\left(-6+3i\right)\left(-6-3i\right)})
Multiply both numerator and denominator of \frac{7}{-6+3i} by the complex conjugate of the denominator, -6-3i.
Re(\frac{7\left(-6-3i\right)}{\left(-6\right)^{2}-3^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{7\left(-6-3i\right)}{45})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{7\left(-6\right)+7\times \left(-3i\right)}{45})
Multiply 7 times -6-3i.
Re(\frac{-42-21i}{45})
Do the multiplications in 7\left(-6\right)+7\times \left(-3i\right).
Re(-\frac{14}{15}-\frac{7}{15}i)
Divide -42-21i by 45 to get -\frac{14}{15}-\frac{7}{15}i.
-\frac{14}{15}
The real part of -\frac{14}{15}-\frac{7}{15}i is -\frac{14}{15}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}