Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{7}{-6+3i}
Add 5 and 2 to get 7.
\frac{7\left(-6-3i\right)}{\left(-6+3i\right)\left(-6-3i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -6-3i.
\frac{7\left(-6-3i\right)}{\left(-6\right)^{2}-3^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{7\left(-6-3i\right)}{45}
By definition, i^{2} is -1. Calculate the denominator.
\frac{7\left(-6\right)+7\times \left(-3i\right)}{45}
Multiply 7 times -6-3i.
\frac{-42-21i}{45}
Do the multiplications in 7\left(-6\right)+7\times \left(-3i\right).
-\frac{14}{15}-\frac{7}{15}i
Divide -42-21i by 45 to get -\frac{14}{15}-\frac{7}{15}i.
Re(\frac{7}{-6+3i})
Add 5 and 2 to get 7.
Re(\frac{7\left(-6-3i\right)}{\left(-6+3i\right)\left(-6-3i\right)})
Multiply both numerator and denominator of \frac{7}{-6+3i} by the complex conjugate of the denominator, -6-3i.
Re(\frac{7\left(-6-3i\right)}{\left(-6\right)^{2}-3^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{7\left(-6-3i\right)}{45})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{7\left(-6\right)+7\times \left(-3i\right)}{45})
Multiply 7 times -6-3i.
Re(\frac{-42-21i}{45})
Do the multiplications in 7\left(-6\right)+7\times \left(-3i\right).
Re(-\frac{14}{15}-\frac{7}{15}i)
Divide -42-21i by 45 to get -\frac{14}{15}-\frac{7}{15}i.
-\frac{14}{15}
The real part of -\frac{14}{15}-\frac{7}{15}i is -\frac{14}{15}.