Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{7}{-2-i}
Add 5 and 2 to get 7.
\frac{7\left(-2+i\right)}{\left(-2-i\right)\left(-2+i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -2+i.
\frac{7\left(-2+i\right)}{\left(-2\right)^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{7\left(-2+i\right)}{5}
By definition, i^{2} is -1. Calculate the denominator.
\frac{7\left(-2\right)+7i}{5}
Multiply 7 times -2+i.
\frac{-14+7i}{5}
Do the multiplications in 7\left(-2\right)+7i.
-\frac{14}{5}+\frac{7}{5}i
Divide -14+7i by 5 to get -\frac{14}{5}+\frac{7}{5}i.
Re(\frac{7}{-2-i})
Add 5 and 2 to get 7.
Re(\frac{7\left(-2+i\right)}{\left(-2-i\right)\left(-2+i\right)})
Multiply both numerator and denominator of \frac{7}{-2-i} by the complex conjugate of the denominator, -2+i.
Re(\frac{7\left(-2+i\right)}{\left(-2\right)^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{7\left(-2+i\right)}{5})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{7\left(-2\right)+7i}{5})
Multiply 7 times -2+i.
Re(\frac{-14+7i}{5})
Do the multiplications in 7\left(-2\right)+7i.
Re(-\frac{14}{5}+\frac{7}{5}i)
Divide -14+7i by 5 to get -\frac{14}{5}+\frac{7}{5}i.
-\frac{14}{5}
The real part of -\frac{14}{5}+\frac{7}{5}i is -\frac{14}{5}.