Evaluate
54\sqrt{3}\approx 93.530743609
Share
Copied to clipboard
\frac{\left(5+\sqrt{3}\right)\left(7+4\sqrt{3}\right)}{\left(7-4\sqrt{3}\right)\left(7+4\sqrt{3}\right)}-\frac{5-\sqrt{3}}{7+4\sqrt{3}}
Rationalize the denominator of \frac{5+\sqrt{3}}{7-4\sqrt{3}} by multiplying numerator and denominator by 7+4\sqrt{3}.
\frac{\left(5+\sqrt{3}\right)\left(7+4\sqrt{3}\right)}{7^{2}-\left(-4\sqrt{3}\right)^{2}}-\frac{5-\sqrt{3}}{7+4\sqrt{3}}
Consider \left(7-4\sqrt{3}\right)\left(7+4\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5+\sqrt{3}\right)\left(7+4\sqrt{3}\right)}{49-\left(-4\sqrt{3}\right)^{2}}-\frac{5-\sqrt{3}}{7+4\sqrt{3}}
Calculate 7 to the power of 2 and get 49.
\frac{\left(5+\sqrt{3}\right)\left(7+4\sqrt{3}\right)}{49-\left(-4\right)^{2}\left(\sqrt{3}\right)^{2}}-\frac{5-\sqrt{3}}{7+4\sqrt{3}}
Expand \left(-4\sqrt{3}\right)^{2}.
\frac{\left(5+\sqrt{3}\right)\left(7+4\sqrt{3}\right)}{49-16\left(\sqrt{3}\right)^{2}}-\frac{5-\sqrt{3}}{7+4\sqrt{3}}
Calculate -4 to the power of 2 and get 16.
\frac{\left(5+\sqrt{3}\right)\left(7+4\sqrt{3}\right)}{49-16\times 3}-\frac{5-\sqrt{3}}{7+4\sqrt{3}}
The square of \sqrt{3} is 3.
\frac{\left(5+\sqrt{3}\right)\left(7+4\sqrt{3}\right)}{49-48}-\frac{5-\sqrt{3}}{7+4\sqrt{3}}
Multiply 16 and 3 to get 48.
\frac{\left(5+\sqrt{3}\right)\left(7+4\sqrt{3}\right)}{1}-\frac{5-\sqrt{3}}{7+4\sqrt{3}}
Subtract 48 from 49 to get 1.
\left(5+\sqrt{3}\right)\left(7+4\sqrt{3}\right)-\frac{5-\sqrt{3}}{7+4\sqrt{3}}
Anything divided by one gives itself.
\left(5+\sqrt{3}\right)\left(7+4\sqrt{3}\right)-\frac{\left(5-\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}
Rationalize the denominator of \frac{5-\sqrt{3}}{7+4\sqrt{3}} by multiplying numerator and denominator by 7-4\sqrt{3}.
\left(5+\sqrt{3}\right)\left(7+4\sqrt{3}\right)-\frac{\left(5-\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{7^{2}-\left(4\sqrt{3}\right)^{2}}
Consider \left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(5+\sqrt{3}\right)\left(7+4\sqrt{3}\right)-\frac{\left(5-\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{49-\left(4\sqrt{3}\right)^{2}}
Calculate 7 to the power of 2 and get 49.
\left(5+\sqrt{3}\right)\left(7+4\sqrt{3}\right)-\frac{\left(5-\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{49-4^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(4\sqrt{3}\right)^{2}.
\left(5+\sqrt{3}\right)\left(7+4\sqrt{3}\right)-\frac{\left(5-\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{49-16\left(\sqrt{3}\right)^{2}}
Calculate 4 to the power of 2 and get 16.
\left(5+\sqrt{3}\right)\left(7+4\sqrt{3}\right)-\frac{\left(5-\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{49-16\times 3}
The square of \sqrt{3} is 3.
\left(5+\sqrt{3}\right)\left(7+4\sqrt{3}\right)-\frac{\left(5-\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{49-48}
Multiply 16 and 3 to get 48.
\left(5+\sqrt{3}\right)\left(7+4\sqrt{3}\right)-\frac{\left(5-\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{1}
Subtract 48 from 49 to get 1.
\left(5+\sqrt{3}\right)\left(7+4\sqrt{3}\right)-\left(5-\sqrt{3}\right)\left(7-4\sqrt{3}\right)
Anything divided by one gives itself.
35+20\sqrt{3}+7\sqrt{3}+4\left(\sqrt{3}\right)^{2}-\left(5-\sqrt{3}\right)\left(7-4\sqrt{3}\right)
Apply the distributive property by multiplying each term of 5+\sqrt{3} by each term of 7+4\sqrt{3}.
35+27\sqrt{3}+4\left(\sqrt{3}\right)^{2}-\left(5-\sqrt{3}\right)\left(7-4\sqrt{3}\right)
Combine 20\sqrt{3} and 7\sqrt{3} to get 27\sqrt{3}.
35+27\sqrt{3}+4\times 3-\left(5-\sqrt{3}\right)\left(7-4\sqrt{3}\right)
The square of \sqrt{3} is 3.
35+27\sqrt{3}+12-\left(5-\sqrt{3}\right)\left(7-4\sqrt{3}\right)
Multiply 4 and 3 to get 12.
47+27\sqrt{3}-\left(5-\sqrt{3}\right)\left(7-4\sqrt{3}\right)
Add 35 and 12 to get 47.
47+27\sqrt{3}-\left(35-20\sqrt{3}-7\sqrt{3}+4\left(\sqrt{3}\right)^{2}\right)
Apply the distributive property by multiplying each term of 5-\sqrt{3} by each term of 7-4\sqrt{3}.
47+27\sqrt{3}-\left(35-27\sqrt{3}+4\left(\sqrt{3}\right)^{2}\right)
Combine -20\sqrt{3} and -7\sqrt{3} to get -27\sqrt{3}.
47+27\sqrt{3}-\left(35-27\sqrt{3}+4\times 3\right)
The square of \sqrt{3} is 3.
47+27\sqrt{3}-\left(35-27\sqrt{3}+12\right)
Multiply 4 and 3 to get 12.
47+27\sqrt{3}-\left(47-27\sqrt{3}\right)
Add 35 and 12 to get 47.
47+27\sqrt{3}-47-\left(-27\sqrt{3}\right)
To find the opposite of 47-27\sqrt{3}, find the opposite of each term.
47+27\sqrt{3}-47+27\sqrt{3}
The opposite of -27\sqrt{3} is 27\sqrt{3}.
27\sqrt{3}+27\sqrt{3}
Subtract 47 from 47 to get 0.
54\sqrt{3}
Combine 27\sqrt{3} and 27\sqrt{3} to get 54\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}