Solve for b
b=-\frac{\sqrt{3}a}{3}+8\sqrt{3}+40
Solve for a
a=\sqrt{3}\left(40-b\right)+24
Share
Copied to clipboard
\frac{\left(5+\sqrt{3}\right)\left(7+4\sqrt{3}\right)}{\left(7-4\sqrt{3}\right)\left(7+4\sqrt{3}\right)}-\frac{5+\sqrt{3}}{7+4\sqrt{3}}=a+b\sqrt{3}
Rationalize the denominator of \frac{5+\sqrt{3}}{7-4\sqrt{3}} by multiplying numerator and denominator by 7+4\sqrt{3}.
\frac{\left(5+\sqrt{3}\right)\left(7+4\sqrt{3}\right)}{7^{2}-\left(-4\sqrt{3}\right)^{2}}-\frac{5+\sqrt{3}}{7+4\sqrt{3}}=a+b\sqrt{3}
Consider \left(7-4\sqrt{3}\right)\left(7+4\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5+\sqrt{3}\right)\left(7+4\sqrt{3}\right)}{49-\left(-4\sqrt{3}\right)^{2}}-\frac{5+\sqrt{3}}{7+4\sqrt{3}}=a+b\sqrt{3}
Calculate 7 to the power of 2 and get 49.
\frac{\left(5+\sqrt{3}\right)\left(7+4\sqrt{3}\right)}{49-\left(-4\right)^{2}\left(\sqrt{3}\right)^{2}}-\frac{5+\sqrt{3}}{7+4\sqrt{3}}=a+b\sqrt{3}
Expand \left(-4\sqrt{3}\right)^{2}.
\frac{\left(5+\sqrt{3}\right)\left(7+4\sqrt{3}\right)}{49-16\left(\sqrt{3}\right)^{2}}-\frac{5+\sqrt{3}}{7+4\sqrt{3}}=a+b\sqrt{3}
Calculate -4 to the power of 2 and get 16.
\frac{\left(5+\sqrt{3}\right)\left(7+4\sqrt{3}\right)}{49-16\times 3}-\frac{5+\sqrt{3}}{7+4\sqrt{3}}=a+b\sqrt{3}
The square of \sqrt{3} is 3.
\frac{\left(5+\sqrt{3}\right)\left(7+4\sqrt{3}\right)}{49-48}-\frac{5+\sqrt{3}}{7+4\sqrt{3}}=a+b\sqrt{3}
Multiply 16 and 3 to get 48.
\frac{\left(5+\sqrt{3}\right)\left(7+4\sqrt{3}\right)}{1}-\frac{5+\sqrt{3}}{7+4\sqrt{3}}=a+b\sqrt{3}
Subtract 48 from 49 to get 1.
\left(5+\sqrt{3}\right)\left(7+4\sqrt{3}\right)-\frac{5+\sqrt{3}}{7+4\sqrt{3}}=a+b\sqrt{3}
Anything divided by one gives itself.
35+27\sqrt{3}+4\left(\sqrt{3}\right)^{2}-\frac{5+\sqrt{3}}{7+4\sqrt{3}}=a+b\sqrt{3}
Use the distributive property to multiply 5+\sqrt{3} by 7+4\sqrt{3} and combine like terms.
35+27\sqrt{3}+4\times 3-\frac{5+\sqrt{3}}{7+4\sqrt{3}}=a+b\sqrt{3}
The square of \sqrt{3} is 3.
35+27\sqrt{3}+12-\frac{5+\sqrt{3}}{7+4\sqrt{3}}=a+b\sqrt{3}
Multiply 4 and 3 to get 12.
47+27\sqrt{3}-\frac{5+\sqrt{3}}{7+4\sqrt{3}}=a+b\sqrt{3}
Add 35 and 12 to get 47.
47+27\sqrt{3}-\frac{\left(5+\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}=a+b\sqrt{3}
Rationalize the denominator of \frac{5+\sqrt{3}}{7+4\sqrt{3}} by multiplying numerator and denominator by 7-4\sqrt{3}.
47+27\sqrt{3}-\frac{\left(5+\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{7^{2}-\left(4\sqrt{3}\right)^{2}}=a+b\sqrt{3}
Consider \left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
47+27\sqrt{3}-\frac{\left(5+\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{49-\left(4\sqrt{3}\right)^{2}}=a+b\sqrt{3}
Calculate 7 to the power of 2 and get 49.
47+27\sqrt{3}-\frac{\left(5+\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{49-4^{2}\left(\sqrt{3}\right)^{2}}=a+b\sqrt{3}
Expand \left(4\sqrt{3}\right)^{2}.
47+27\sqrt{3}-\frac{\left(5+\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{49-16\left(\sqrt{3}\right)^{2}}=a+b\sqrt{3}
Calculate 4 to the power of 2 and get 16.
47+27\sqrt{3}-\frac{\left(5+\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{49-16\times 3}=a+b\sqrt{3}
The square of \sqrt{3} is 3.
47+27\sqrt{3}-\frac{\left(5+\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{49-48}=a+b\sqrt{3}
Multiply 16 and 3 to get 48.
47+27\sqrt{3}-\frac{\left(5+\sqrt{3}\right)\left(7-4\sqrt{3}\right)}{1}=a+b\sqrt{3}
Subtract 48 from 49 to get 1.
47+27\sqrt{3}-\left(5+\sqrt{3}\right)\left(7-4\sqrt{3}\right)=a+b\sqrt{3}
Anything divided by one gives itself.
47+27\sqrt{3}-\left(35-13\sqrt{3}-4\left(\sqrt{3}\right)^{2}\right)=a+b\sqrt{3}
Use the distributive property to multiply 5+\sqrt{3} by 7-4\sqrt{3} and combine like terms.
47+27\sqrt{3}-\left(35-13\sqrt{3}-4\times 3\right)=a+b\sqrt{3}
The square of \sqrt{3} is 3.
47+27\sqrt{3}-\left(35-13\sqrt{3}-12\right)=a+b\sqrt{3}
Multiply -4 and 3 to get -12.
47+27\sqrt{3}-\left(23-13\sqrt{3}\right)=a+b\sqrt{3}
Subtract 12 from 35 to get 23.
47+27\sqrt{3}-23+13\sqrt{3}=a+b\sqrt{3}
To find the opposite of 23-13\sqrt{3}, find the opposite of each term.
24+27\sqrt{3}+13\sqrt{3}=a+b\sqrt{3}
Subtract 23 from 47 to get 24.
24+40\sqrt{3}=a+b\sqrt{3}
Combine 27\sqrt{3} and 13\sqrt{3} to get 40\sqrt{3}.
a+b\sqrt{3}=24+40\sqrt{3}
Swap sides so that all variable terms are on the left hand side.
b\sqrt{3}=24+40\sqrt{3}-a
Subtract a from both sides.
\sqrt{3}b=-a+40\sqrt{3}+24
The equation is in standard form.
\frac{\sqrt{3}b}{\sqrt{3}}=\frac{-a+40\sqrt{3}+24}{\sqrt{3}}
Divide both sides by \sqrt{3}.
b=\frac{-a+40\sqrt{3}+24}{\sqrt{3}}
Dividing by \sqrt{3} undoes the multiplication by \sqrt{3}.
b=\frac{\sqrt{3}\left(-a+40\sqrt{3}+24\right)}{3}
Divide -a+40\sqrt{3}+24 by \sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}