Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(5+\sqrt{3}\right)\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}
Rationalize the denominator of \frac{5+\sqrt{3}}{5-\sqrt{3}} by multiplying numerator and denominator by 5+\sqrt{3}.
\frac{\left(5+\sqrt{3}\right)\left(5+\sqrt{3}\right)}{5^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5+\sqrt{3}\right)\left(5+\sqrt{3}\right)}{25-3}
Square 5. Square \sqrt{3}.
\frac{\left(5+\sqrt{3}\right)\left(5+\sqrt{3}\right)}{22}
Subtract 3 from 25 to get 22.
\frac{\left(5+\sqrt{3}\right)^{2}}{22}
Multiply 5+\sqrt{3} and 5+\sqrt{3} to get \left(5+\sqrt{3}\right)^{2}.
\frac{25+10\sqrt{3}+\left(\sqrt{3}\right)^{2}}{22}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(5+\sqrt{3}\right)^{2}.
\frac{25+10\sqrt{3}+3}{22}
The square of \sqrt{3} is 3.
\frac{28+10\sqrt{3}}{22}
Add 25 and 3 to get 28.