Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(5+i\sqrt{2}\right)\left(1+i\sqrt{2}\right)}{\left(1-i\sqrt{2}\right)\left(1+i\sqrt{2}\right)}
Rationalize the denominator of \frac{5+i\sqrt{2}}{1-i\sqrt{2}} by multiplying numerator and denominator by 1+i\sqrt{2}.
\frac{\left(5+i\sqrt{2}\right)\left(1+i\sqrt{2}\right)}{1^{2}-\left(-i\sqrt{2}\right)^{2}}
Consider \left(1-i\sqrt{2}\right)\left(1+i\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5+i\sqrt{2}\right)\left(1+i\sqrt{2}\right)}{1-\left(-i\sqrt{2}\right)^{2}}
Calculate 1 to the power of 2 and get 1.
\frac{\left(5+i\sqrt{2}\right)\left(1+i\sqrt{2}\right)}{1-\left(-i\right)^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(-i\sqrt{2}\right)^{2}.
\frac{\left(5+i\sqrt{2}\right)\left(1+i\sqrt{2}\right)}{1-\left(-\left(\sqrt{2}\right)^{2}\right)}
Calculate -i to the power of 2 and get -1.
\frac{\left(5+i\sqrt{2}\right)\left(1+i\sqrt{2}\right)}{1-\left(-2\right)}
The square of \sqrt{2} is 2.
\frac{\left(5+i\sqrt{2}\right)\left(1+i\sqrt{2}\right)}{1+2}
Multiply -1 and -2 to get 2.
\frac{\left(5+i\sqrt{2}\right)\left(1+i\sqrt{2}\right)}{3}
Add 1 and 2 to get 3.
\frac{5+5i\sqrt{2}+i\sqrt{2}-\left(\sqrt{2}\right)^{2}}{3}
Apply the distributive property by multiplying each term of 5+i\sqrt{2} by each term of 1+i\sqrt{2}.
\frac{5+6i\sqrt{2}-\left(\sqrt{2}\right)^{2}}{3}
Combine 5i\sqrt{2} and i\sqrt{2} to get 6i\sqrt{2}.
\frac{5+6i\sqrt{2}-2}{3}
The square of \sqrt{2} is 2.
\frac{3+6i\sqrt{2}}{3}
Subtract 2 from 5 to get 3.