Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(5+\sqrt{11}\right)\left(5+\sqrt{11}\right)}{\left(5-\sqrt{11}\right)\left(5+\sqrt{11}\right)}
Rationalize the denominator of \frac{5+\sqrt{11}}{5-\sqrt{11}} by multiplying numerator and denominator by 5+\sqrt{11}.
\frac{\left(5+\sqrt{11}\right)\left(5+\sqrt{11}\right)}{5^{2}-\left(\sqrt{11}\right)^{2}}
Consider \left(5-\sqrt{11}\right)\left(5+\sqrt{11}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5+\sqrt{11}\right)\left(5+\sqrt{11}\right)}{25-11}
Square 5. Square \sqrt{11}.
\frac{\left(5+\sqrt{11}\right)\left(5+\sqrt{11}\right)}{14}
Subtract 11 from 25 to get 14.
\frac{\left(5+\sqrt{11}\right)^{2}}{14}
Multiply 5+\sqrt{11} and 5+\sqrt{11} to get \left(5+\sqrt{11}\right)^{2}.
\frac{25+10\sqrt{11}+\left(\sqrt{11}\right)^{2}}{14}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(5+\sqrt{11}\right)^{2}.
\frac{25+10\sqrt{11}+11}{14}
The square of \sqrt{11} is 11.
\frac{36+10\sqrt{11}}{14}
Add 25 and 11 to get 36.